10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Improving Reduction Techniques in
Pseudo-Boolean Conflict Analysis

Orestis Lomis &
DTAI, KU Leuven, Belgium

Jo Devriendt &

Nonfiction Software, Belgium

Hendrik Bierlee =
DTAI, KU Leuven, Belgium

Tias Guns &
DTAI, KU Leuven, Belgium

—— Abstract

Recent pseudo-Boolean (PB) solvers leverage the cutting planes proof system to perform SAT-
style conflict analysis during search. This process learns implied PB constraints, which can prune
later parts of the search tree and is crucial to a PB solver’s performance. A key step in PB
conflict analysis is the reduction of a reason constraint, which caused a variable propagation that
contributed to the conflict. While necessary, reduction generally makes the reason constraint less
strong. Consequently, different approaches to reduction have been proposed, broadly categorised as
division- or saturation-based, with the aim of preserving the strength of the reason constraint as
much as possible.

This paper proposes two novel techniques in each reduction category. We theoretically show
how each technique yields reason constraints which are at least as strong as those obtained from
existing reduction methods. We then evaluate the empirical effectiveness of the reduction techniques
on hard knapsack instances and the most recent PB’24 competition benchmarks.

2012 ACM Subject Classification Theory of computation — Constraint and logic programming
Keywords and phrases Constraint Programming, Pseudo-Boolean Reasoning, Conflict Analysis
Digital Object Identifier 10.4230/LIPIcs.SAT.2025.27

Supplementary Material Dataset (Experimental Results): https://github.com/ML-KULeuven/SAT25_
PB_reductions_experiments

Funding This research was partly funded by the European Research Council (ERC) under the EU
Horizon 2020 research and innovation programme (Grant No 101002802, CHAT-Opt)

1 Problem setting

Although the Boolean satisfiability (SAT) problem is NP-complete [7], in recent decades
conflict-driven clause learning (CDCL) solvers [19, 1] routinely solve problems with up to
millions of variables. However, the resolution proof system on which they are based may
require exponential solve-time for some problems, such as the pigeonhole problem [14]. For
this reason, higher-level proof systems pose a promising alternative, such as the cutting
planes proof system [8]. Cutting planes form the underlying proof system of conflict-driven
pseudo-Boolean (PB) constraint solvers, where we especially focus on PB constraints that
are (weighted) linear inequalities over Boolean variables. The cutting planes proof system
generalises the resolution proof system by using such PB constraints instead of clauses, which
allow for more powerful reasoning. In theory this means that PB solvers can solve problems
like the pigeonhole problem in polynomial time, where CDCL-based solvers would need
exponential time. The effectiveness of good PB reasoning has been shown in the most recent

© Orestis Lomis, Jo Devriendt, Hendrik Bierlee, and Tias Guns;

37 licensed under Creative Commons License CC-BY 4.0
28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025).
Editors: Jeremias Berg and Jakob Nordstréom; Article No. 27; pp. 27:1-27:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:orestis.lomis@kuleuven.be
https://orcid.org/0009-0006-2934-0510
mailto:jo.devriendt@nonfictionsoftware.com
https://orcid.org/0000-0002-6346-3665
mailto:henk.bierlee@kuleuven.be
https://orcid.org/0000-0001-6766-5435
mailto:tias.guns@kuleuven.be
https://orcid.org/0000-0002-2156-2155
https://doi.org/10.4230/LIPIcs.SAT.2025.27
https://github.com/ML-KULeuven/SAT25_PB_reductions_experiments
https://github.com/ML-KULeuven/SAT25_PB_reductions_experiments
https://github.com/ML-KULeuven/SAT25_PB_reductions_experiments
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

v

78

79

80

81

82

83

84

85

86

87

88

89

Improving Reduction Techniques in Pseudo-Boolean Conflict Analysis

PB competition of 2024 [23], where PB solvers such as RoundingSat [12] and its offspring
Ezact [11] show top performance with their native implementation of the cutting planes
proof system. Ezact and RoundingSat are not only used as stand-alone solvers, but also
as PB oracles in other PB solvers such as Hybrid-CASHWMaxSATDisjCadSP+Exact [21],
mixed-bag [17] and IPBHS [16].

However, there still lies a difficulty for PB solvers to use the improved reasoning power
of the cutting planes proof system effectively. In CDCL, the resolution of two conflicting
clauses can simply be done by taking the union of two conflicting clauses and leaving out the
propagated variable. While resolution can be generalised, PB solvers require an additional
so-called reduction step to ensure the eventual learned constraint prevents the original
conflict [5]. Additionally, the stronger the learned constraint the more pruning it will be able
to do, hence the need for reduction techniques that keep the reason constraint as strong as
possible. Consequently, various types of reduction have been investigated [12, 18, 20]. In
this work we theoretically motivate and investigate four new reduction methods that are at
least as strong as existing reduction methods.

Our contributions First, we propose two novel variants of division-based reduction,
namely Weaken Superfluous (WS) and Anti-Weakening of non-falsifieds (AW). Both exploit
the rounding behaviour of the division operation in division-based reduction. We prove how
the reduced constraints using these techniques are at least as strong as the ones obtained
from using standard division-based reduction. Furthermore, we show how after applying the
WS technique, the division operation is equivalent to the Mixed-Integer Rounding (MIR)
operation, even though generally MIR dominates division [20]. Secondly, we propose two novel
variants of a saturation-based reduction technique known as Multiply and Weaken (MW) [18],
which we call Multiply and Weaken Direct (MWD) and Multiply and Weaken Indirect (MWI).
These variants hybridize saturation- and division-based reduction by applying the former
when favourable, using the latter as fallback. Then, we show that MWD with MWI produces
constraints at least as strong as those from MWD alone. Finally, experiments empirically
evaluate how the theoretically stronger reduction techniques impact solver performance on
crafted and competition PB problems.

The organisation of the paper is as follows. In Section 2 we review the basics of PB
solving, starting from CDCL and working our way to the current state-of-the-art division-
based reduction method in RoundingSat. In Section 3 and Section 4 we introduce our novel
techniques for division- and saturation-based reduction methods respectively. Section 5
contains the results from our experiments. In Section 6 we conclude our finding and discuss
future work.

2 Preliminaries

We use notation and terminology from [10]. The term pseudo-Boolean (PB) constraint refers
to a 0-1 linear inequality. We identify 1 with true and 0 with false. A literal £ denotes
either a variable x or its negation z = 1 — x. We assume w.l.o.g. that all constraints
> cil; > 6 are written in normalized form, where literals ¢; are over pairwise distinct
variables, coefficients ¢; are positive integers, and § is a positive integer called the degree.
For a constraint C, lits(C') denotes its set of literals and coeff (¢;, C) denotes the coefficient
of literal ¢;. A PB constraint C with degree 1 is a clause.

The (partial) assignment p is an ordered set of literals over pairwise distinct variables. A
literal £ is assigned to true by an assignment p if £ € p, assigned to false or falsified if £ € p,
and is unassigned otherwise. We define the slack o of a constraint C' =)", ¢;¢; > § under a

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

O. Lomis, J. Devriendt, H. Bierlee, and T. Guns

partial assignment p as:

slack(C, p) = Z ci| =9 (1)

£; Elits(c) ,Zi €p

In other words, the slack measures how far p is from falsifying the constraint. Then,
we say that p falsifies C if slack(C,p) < 0. A pseudo-Boolean formula ¢ is a set of PB
constraints. An assignment p is a solution to ¢ if p satisfies all constraints in ¢. A formula
is satisfiable if it has a solution.

2.1 Conflict-Driven Pseudo-Boolean Search

Conflict-driven PB solving generalizes the CDCL algorithm for SAT, but uses PB constraints
instead of clauses. The state of a PB solver can be represented by a 1 and p, where 1 is a
set of constraints called the constraint database. Initially, ¢ is the input formula ¢ and p is
the empty set {}.

Given a solver state, the search loop starts with a propagation phase, which checks for
any constraint C' € ¢ whether it is falsified:

slack(C, p) < 0, (2)

or whether a literal ¢; in C with coefficient ¢;, where ¢; has not yet been assigned by p, is
implied by C' under p:

slack(C, p) — ¢; < 0 with €; & p, 0; & p. (3)

If condition (3) holds, C is falsified by pU/;, so ¢; is implied by C under p. For an assignment
p we write £;/C to denote that C' is the reason for the propagation of ¢;, and also use the
notation C' = reason(¢;, p). Each propagation can enable new propagations, continuing the
propagation phase until condition (3) does not hold for any constraint in the database ¥ or
until condition (2) holds for at least one. Note that unlike clauses, a single PB constraint
can propagate multiple literals, even at different propagation phases.

If condition (2) holds for some constraint, it is considered a conflict and the constraint is

denoted as the conflict constraint. On conflict, the solver enters a conflict analysis phase.

During this phase, the solver derives a learned constraint which is a logical consequence of
the current set of reason constraints combined with the conflict constraint. Crucially, the
learned constraint must propagate a literal at some earlier search depth, hence preventing
the current conflict from occurring again. Then, this learned constraint is added to 1, after
which the solver backjumps to a sufficient early search depth.

Alternatively, if no conflict is detected, the solver extends p by making a heuristic decision
to assign some currently unassigned variable. If ¢; is a decision then it has no associated
reason constraint, which we denote by ¢;/-.

The PB solver reports unsatisfiability whenever it learns a constraint equivalent to the
trivial inconsistency 0 > 1. If propagation does not lead to a conflict and all variables have
been assigned, the solver reports that the input formula is satisfiable.

2.2 PB Conflict Analysis

In this subsection we will go into more detail about the conflict analysis phase of PB solvers,
where the following operations are used [2, 4]:

27:3

SAT 2025

27:4

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

Improving Reduction Techniques in Pseudo-Boolean Conflict Analysis

Addition.
S(cili + i) > (6 +6) (4)

Where we implicitly assume that the result is rewritten in normalised form.
» Example 1. Addition of the constraint x+¢y > 2 with y+2 > 1 yieldsz+y+5+2 > 3,
which normalises to 4+ z > 2 by cancelling literals y and y, where y +y = 1.
Division.
_zabtiz0 Div. by d € Ny
2416 > 5] ()

Multiplication.

Zci& Z é

Saturation.
S min(c;,0)l; > o0 (7)

Weakening.

cl + Zci& Z)
(c—m)l+Xcil; >6—m

Wkn. ¢ by m € Ny

Weakening is partial when m < ¢, and full when m = c.
Anti-weakening
cl + ZCIL'EZ' Z 0
(c+m)l+%cil; >0

Anti-Wkn. £ by m € Ny
9)

Using these operations, PB solvers often implement different variants of conflict analysis,
[6, 12, 3, 11]. We give a general outline in Algorithm 1 [20]. Conflict analysis starts from the
conflict constraint C.,. We call the last literal of the current assignment, the reason literal
¢,. If it was not propagated, or ¢, ¢ lits(C.o), then it did not contribute to the conflict, so
it can be removed from the assignment p and we continue with the literal propagated just
before it. If it is propagated and ¢, € lits(C,), then we should replace ¢, with its reason
constraint Cs, = reason({,, p) by addition of the two constraints [15, 4], which requires
reducing the reason constraint as explained below. When the new C., is propagating we
have a learned constraint, and we can exit the conflict analysis phase.

Algorithm 1 analyzeConflict

Input: Conflict constraint C.,, falsifying partial assignment p
Output: Learned constraint C
1 while C, is not propagating do
£, < last literal of assignment p
if ¢, is propagated A 0, € lits(C.,) then
Crsn < reason(ly, p)
(Cred, Ceo) + reduce(Crsn, Ceo,y by, p)
Cco — Cred + Cco

7 | pep\ {6}

8 return C,,

o G WN

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

O. Lomis, J. Devriendt, H. Bierlee, and T. Guns

To preserve the conflict during addition of C',, and C.,, there are two key requirements
which make conflict-driven learning non-trivial for PB solving: The first one is that (i) adding
Crsn to Cgo should indeed eliminate /,. Secondly, the learned constraint must propagate at
an earlier stage, therefore (ii) it needs to remain conflicting under the current assignment.
Since these requirements generally do not hold [4, Chapter 7], we need a reduction step,
where (Cred, Ceo) = reduce(Crsn, Ceo, bry p) [13] such that the requirements are enforced. A
sufficient condition for (i) is that the reduced reason has the same coefficient for ¢, as the
conflict constraint has for £,.. A sufficient condition for (ii) is that after reduction, the reduced
reason has slack 0 or less, since slack(C.,, p) < 0 by definition and slack is subadditive [12]:
adding two constraints yields a constraint with a slack at most the sum of the slacks of the
two original constraints. Hence formally we have the following requirements:

Cancelling Coefficients (Requirement 1) coeff (¢, Creq) = coeff(€y, Ceo)
Negative Slack Condition (Requirement 2) slack(Creq,p) <0

Our work focuses on this reduction step. To compare between two outcomes of a reduction,
we say that C is stronger than C’ when C implies C” (i.e. every satisfying variable assignment
to C' is also a satisfying assignment to C’) but not the other way around. C' is rationally
stronger than C’ when the former implies the latter and not the other way around, considering
assignments of rational values between the closed interval [0, 1] to the variables. We say
reduction method A dominates reduction method B, with reduced constraints Cfe 4 and Cfed
respectively, when for any input C;f‘ed rationally implies Ci d

We already mentioned that slack is subadditive under addition. Additionally, slack
remains unchanged when weakening a non-falsified literal or anti-weakening a falsified literal;
slack increases when weakening a falsified literal or anti-weakening a non-falsified literal;
slack is multiplied by m when multiplying a constraint by m. Hence, to decrease the
slack of an individual non-conflicting reason constraint, at least one division or saturation
step is necessary. Saturation-based reduction was the first successful implementation of
cutting planes for PB solving [3], however most state-of-the-art solvers opt for division-based
reduction [12, 17, 11, 21]. We will now look more in depth at division-based reduction.

2.3 RoundingSat-style Reduction

We describe the division-based reduction approach proposed by RoundingSat [12], which
consists of three steps.

Weaken Non-Divisible Non-Falsifieds (Step 1) In the first step, we weaken all non-falsified
literals that have a coefficient not divisible by ¢,s,, the reason literal ¢,’s coefficient, so
that all non-falsified literals become divisible by c¢,sy. In the original RoundingSat paper,
these literals were fully weakened, but in the most recent implementation of RoundingSat?,
non-falsified literals with coefficient ¢; are partially weakened by ¢; mod ¢4, i.€. to the
largest multiple of ¢, smaller than ¢;. This is a less aggressive version of weakening
also discussed in [18].

Divide (Step 2) In the second step, we divide the resulting constraint by ¢;s, and round
up all coefficients as per Equation (5). Since the previous weakening guaranteed that all
non-falsified literals are divisible by c¢;.s,, we have coeff (¢, Crsn) = 1 and no non-falsified
literals are rounded up during division, which would have increased the slack. Furthermore,

! This recent version also participated in the last PB competition [23].

27:5

SAT 2025

27:6

191

192

193

194

195

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

Improving Reduction Techniques in Pseudo-Boolean Conflict Analysis

the authors have proven after this division step the slack is at most 0, because the divisor
is larger than the slack [12, Proposition 3.1], hence satisfying Requirement 2. From their
work it follows that:
» Corollary 2. Given a constraint Crs, with slack o and a divisor d € Ny, if the
coefficients of all non-falsified literals are divisible by d, then the slack after division is
5.

Multiply (Step 3) In the third step, given that ¢,’s coefficient is now 1, Requirement 1 can
be satisfied by multiplying the reason constraint by the coefficient of the negated reason
literal in the conflict c.,.

» Example 3. Given the reason constraint C,.s,, = x4+ 3y + 3z + 5w > 6, a conflict constraint
Ceo =4y + 4w > 4, an assignment p = {z/-,y/+, 2/C\rsn, w/Crsn}, reason literal £, = w and
divisor d = coeff (€, Crsn) = 5.

Step 1 of this method is to weaken the non-divisible non-falsified literals. So z is weakened
by 3. Then in Step 2, the constraint is divided by 5:

r+3y+3z+5w>6
T+ 3y +o5w >3
r+y+w>1

Wkn. z by 3
Div. by 5 (10)

Note that Requirement 2 is now already satisfied. To satisfy Requirement 1 we need to
perform Step 3 by multiplying 1z + 1y + 1w > 1 by coeff (¢,,Ce,) = 4 to get the reduced
reason Cy.q = 4x + 4y + 4w > 4, which satisfies Requirements 1 and 2. To obtain a new
learned constraint we then add the reduced reason to C., and get C; = 4x + 4y > 4. This
learned constraint will propagate y as soon as Z is decided, thereby preventing the conflict,
and possibly preventing similar conflicts in later search.

3 Division-Based Reduction Variants

In this section we propose two new variants of division-based reduction, based on the above.
Notice that since the reduced constraint C,..q must be implied by the reason constraint C.s,
Creq is at best as strong as C.¢,. Hence, our goal is to design a reduction method such that
Ceq remains as strong as possible.

In Sections 3.1 and 3.2, we will exploit Corollary 2 and the behaviour of rounding
during division-based reduction in two novel techniques. For each technique we show
that Requirements 1 and 2 still hold and that each technique dominates division-based
reduction without the technique. In Section 3.3, we show how the techniques interact and
can be combined.

3.1 Weaken Superfluous (WS)

When dividing a constraint with degree § by divisor d, the post-division degree is §' = fg]
Due to the upward rounding, we can often lower § by some amount 6 without changing
&'. Specifically, &' = [5] = [252] for any 6 < (§ — 1) mod d. After Step 1 (weakening of
non-divisible non-falsifieds) of the above division-based reduction, we set § maximally to get
6 = (6 — 1) mod d. We define a superfluous literal as:

» Definition 4 (Superfluous Literal). When dividing a constraint C by d, a literal £y with
coefficient cg is superfluous when 0 < ¢; mod d < 6 with § = (6 — 1) mod d.

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

O. Lomis, J. Devriendt, H. Bierlee, and T. Guns

Hence, we can weaken a superfluous literal ¢, by ¢, mod d without altering the degree &’
obtained after Step 2. But now, ¢, is rounded down in Step 2, which makes the reduced
constraint stronger. Thus we propose the WS reduction where we iteratively weaken
superfluous literals until there are no more left. Since the non-falsifieds have already been
weakened to be divisible, the superfluous literals are always falsified. Therefore the reason
literal ¢, is never superfluous and its coefficient will not change compared to RoundingSat-
style reduction. Thus Requirement 1 will still be satisfied after Step 3 as when applying this
reduction.

» Example 5. Continuing with Example 3, after Step 1, we can weaken by a total of
0 =(0—1)modd=(3—1)mod5 =2 before Step 2. Thus x is a superfluous literal, so we
weaken it as well.

z+3y+3z2+5w>6
z+3y+ow >3
3y + dw > 2
y+w>1

Wkn. z by 3
Wkn. z by 1
Div. by 5 (11)

The final constraints from Equations (10) and (11) now both satisfy Requirement 2 and
after multiplication both will also satisfy Requirement 1, but the latter is stronger than the
former.

We now prove division-based reduction with WS dominates division-based reduction
without WS.

» Proposition 6. Let d € Ny be some divisor. Let C = csls + Y c;l; > § be a constraint
with £y a superfluous literal, so ¢, mod d < 0. Let C' be the constraint after division by d.
Let CW'S be the constraint after weakening the superfluous literal £, to the nearest divisible
integer (so by c¢s mod d), and then division by d.

C"'S implies C' and the slack of C'® is at most that of C'.

Proof. We know that after division C" = [$] 6, + > [4] 4 > [%W and

CWS = [cameamodd] g 4 S7Tet] g, > [S=calnodd] Note that [Se=¢atnodd] — €]] and
that {%%Mw = (%W (since ¢, mod d < 6). Hence, C''® only differs from C’ in that the
coefficient of ¢, is rounded down. This means antiweaken(C"3, ¢,,1) = C' and thus C"'*

implies C’. <

From the proof, antiweaken(C"* £,,1) = C', so after division, the slack of the constraint
where a superfluous literal is weakened is at most that of the non-weakened variant. So
weakening superfluous literals preserves whether Requirement 2 is satisfied after division.

3.1.1 Link to Mixed Integer Rounding (MIR)

It has been proposed to replace the division operation (Step 2) in division-based reduction
by the Mixed Integer Rounding (MIR) operation [20]:

Mixed Integer Rounding (MIR).

Ci cj c¢; mod d
Seen 916+ en (3] + oD modari)li

— MIR by d € No

(4] (12)

Y

27:7

SAT 2025

27:8

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

Improving Reduction Techniques in Pseudo-Boolean Conflict Analysis

with
L ={¢|c¢modd> (§ —1)moddVc; modd=0},

I, ={¢; | 0 <¢;jmodd< (6—1)modd},

To obtain normalised PB constraints with integer coefficients, MIR is followed by multi-
plication by ((§ — 1) mod d) + 1.

It was shown that division-based reduction using the MIR operation in Step 2 dominates
division-based reduction with the division operation [20]. However, we can show that if
there are no superfluous literals, the two reduction variants are equivalent. Consequently,
after weakening superfluous literals, using MIR in Step 2 provides no advantage anymore
compared to using division.

» Proposition 7. Let C = > ¢;¢; > 6 be a constraint and d € Ny a divisor such that none
of the literals 0; are superfluous in C. Let CPTV and CMIE be the constraints obtained by
applying the division and the MIR operation with d, respectively. Then CPIV = CMIR,

Proof. As no literals are superfluous, for all literals it holds by Definition 4 that ¢; mod d > 6

or ¢; mod d = 0. Hence, I = (). In that case, Equation (12) simplifies to Equation (5), so
DIV _ oMIR, <

This means that, when there are no superfluous literals (e.g. after removing them with WS)
division and MIR are equivalent.? This is not the case when there are superfluous literals
in the constraint. E.g. WS followed by division on constraint = 4+ 2y > 2 with divisor 2
is stronger than just MIR on the same constraint. The opposite can also be true, e.g. for
constraint + y + 2z > 2 with divisor 2. There could be other cases where just the MIR
operation, without doing WS first, may be stronger than WS combined with the division
operation. Further analysis is left for future work.

3.2 Anti-Weaken Anti-Superfluous (AW)

When dividing a constraint with slack o by divisor d, the post-division slack is [%J according

to Corollary 2. Due to downward rounding, we can often increase o by some amount s without
changing {%J Specifically, {%J = LU;”J for any 0 < k < (d — 0 — 1) mod d. During Step 1
we set k£ maximally to get kK = (d — 0 — 1) mod d. We define an anti-superfluous literal as:

» Definition 8 (Anti-Superfluous Literal). When dividing a constraint C' with slack o by d, a
non-falsified literal {4, with coefficient cqqy is anti-superfluous when 0 < d — (¢qyy mod d) < K
with k = (d — 0 — 1) mod d.

During the weakening of non-divisible non-falsifieds, we can then anti-weaken £,,, by d —
(Caw mod d). This makes the literal divisible without it being weakened, while still not
increasing the slack as part of division by d. Note that we can repeat this step until there
are no more anti-superfluous literals left.

» Example 9. We can again look at the conflict from Example 3, but now apply AW.
Instead of weakening z by 3, we can anti-weaken it by 2 and then divide by 5.

2 Up to multiplication by a constant factor, which is needed for MIR.

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

O. Lomis, J. Devriendt, H. Bierlee, and T. Guns

r+3y+32+>5w>6
r+3y+ 52+ 5w >6
c+y+z+w>2

Anti-Wkn. z by 2
Div. by 5

(13)

The final constraints from Equations (10) and (13) now both satisfy Requirement 2 and
after multiplication will also satisfy Requirement 1, but the latter is stronger than the former.

We now prove that division-based reduction with anti-weakening non-falsifieds dominates
division-based reduction without.

» Proposition 10. Let d be some divisor, p a partial assignment, C' = cqwlaw + Y _,; cili > 0
a constraint with slack o, and Ly, an anti-superfluous literal, so 0 < d — (¢qy mod d) < k.
Let C' be the constraint after Steps 1 and 2. Let CAW be the constraint after Steps 1
and 2 where during Step 1 L4, is anti-weakened by d — (¢q mod d) instead of weakened by
Caw mMod d.
CAW implies C' and the slack of CW is equal to that of C".

Proof. Since the total amount that is anti-weakened is at most x, we know that the slacks of
C" and CAW are still equal after Step 2. Then, since £q,, is anti-weakened for CAW it holds
that coeff (Low, C") + 1 = coeff (£aw, C"). And since the slack of the two constraints is the
same, the following equality holds for their respective degrees ¢’ + 1 = §4". This means
weaken(CAW €4, 1) = C' and thus CA" implies C”. <

Hence, we propose the AW reduction where we iteratively anti-weaken anti-superfluous
literals until there are no more left. From Proposition 10 it follows that anti-weakening does
not increase the slack (as it yields constraints that are at least as strong), preserving Re-
quirement 2. And since in RoundingSat-style reduction the divisor is the reason literal’s
coefficient, the reason literal is never anti-superfluous and will thus be unchanged, satisfy-
ing Requirement 1.

3.3 Combining WS and AW reduction

There is an interesting dynamic between the WS and AW reduction methods. Both exploit Co-
rollary 2 in a similar way, by temporarily increasing the slack, while ensuring Requirement 2
is not violated after division. In the context of division-based reduction, WS and AW are two
sides of the same coin, where WS applies to falsified literals and AW to non-falsified literals.

» Proposition 11. Let d be some divisor and p a partial assignment. Let C = cil; > & be
some constraint with slack o, before Step 1. Let k = (d — o — 1) mod d. Let C' be that same
constraint, with degree 6" after Step 1. Let § = (6’ — 1) mod d. Then 0 = k.

Proof. Before Step 1, k = (d — 0 — 1) mod d. Weakening non-falsified literals does not
alter this value. So after Step 1, § = (8’ — 1) mod d. By rearranging Equation (1) and
replacing &’ and since all non-falsifieds are divisible by d we get § = (§ — 1) mod d =
(Xf¢pci—0o—1)modd= (-0 —1)modd=(d—o—1)modd. Therefore, § = . <

So the amount @ we can (anti-)weaken by is shared between the two techniques, i.e. if we
weaken superfluous literals by 6, then we only have 6 — 6’ left to anti-weaken anti-superfluous
literals.

We can easily combine AW and WS in one divsion-based reduction approach, which we
present in Algorithm 2. We first apply AW in lines 6 to 8, then WS in lines 10 to 14.

27:9

SAT 2025

27:10

341

342
343
344
345
346
347
348

349

350

351

352
353
354
355

356

357

358

Improving Reduction Techniques in Pseudo-Boolean Conflict Analysis

Algorithm 2 reduceDivision

Input: Reason C.,,, conflict C,, reason literal ¢,., partial assignment p
Output: Tuple of reduced constraint C,.,, and conflict constraint C.,

1 d < coeff (U, Crsp)

2 0 < (d— slack(Crsp,p) — 1) mod d

3 for ¢; € lits(Cys,) do

4 a <+ coeff (Crsn, £;) mod d

5 if « £0A/; ¢ p then

6 if 6 —d+ «a > 1 then

7 0« 0—d+a

8 L continue

9 Crsn — weaken(Clrgp, b, @)

10 for ¢; € lits(C\g,) do

11 a <+ coeff (Crsn, £;) mod d
12 if 0 < a <60 then

13 L 0+ 60—«

14 Crsn < weaken(Clrgp, b, @)

15 Clrgp dz'm'degCrsn, d)
16 Creq < coeff(by, Ceo) - Crsn
17 return (C,eq, Ceo)

4 Saturation-Based Reduction Variants

In the previous section we focused on division-based reduction. In this section we will focus
on the other family of reduction techniques: saturation-based reduction. We investigate a
saturation-based method called Multiply and Weaken (MW) [18]. The main idea we use from
MW is to multiply the reason and/or the conflict constraint in order to bring the coefficients
of the reason literal in the reason c,,, and conflict c., close to each other, with c,s, > cco.
We develop two reduction variants, both of which use weakening in a different manner to
satisfy Requirement 1. As for Requirement 2, the MW reduction variants use the necessary,
but less strict, requirement:

Weak Negative Slack Condition (Requirement 3) slack(Cred, p) + slack(Ceo,p) <0

4.1 Multiply and Weaken Direct (MWD)

The first MW reduction variant, Multiply and Weaken Direct (MWD), applies the following

Cc

operations. First, multiply C,.,, by [1 and C,, by p = max(1, LC;:J) Then, weaken

Crsn

the reason literal ¢, in the multiplied reason constraint by the exact amount needed to

satisfy Requirement 1, i.e. by [Seo -‘ - Crsn — b - Ceo. However, these operations will only

Crsn

yield a reduced reason and conflict constraint (i.e. meeting Requirement 3) if the following
condition holds:

[Ceo —‘ - slack(Clrsn, p) + p - slack(Ceo, p) <0 (14)

CT’STL

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

O. Lomis, J. Devriendt, H. Bierlee, and T. Guns

If Equation (14) does hold, then Requirement 3 is guaranteed to be satisfied, since the
multiplications of the slack are taken into account and weakening of non-falsified literals
does not increase the slack. If Equation (14) does not hold, MWD reduction uses a fallback
reduction method instead. In some cases, MWD yields stronger constraints than division-
based reduction:

» Example 12. Given a reason constraint C., = x + 2y + 3z + 5w > 5, a conflict constraint
Ceo = 3u+ 4w + by > 7, an assignment p = {Z/-,y/-,w/Cprsn} and a reason literal ¢, = w.
We show Steps 1 and 2 for division-based reduction:

r+2y+3z2+5w>5
T+ 2y + 5w > 2
T+y+w=>1

Wkn. z by 3
Div. by 5 (15)

For MWD reduction, we first need to check if it is even possible to satisfy Requirement 3.
Since [%—‘ - slack(Crn, p) + p- slack(Ceo, p) = [2] 3+ max(1, [3])- (-4)=3-4=-1<
0 Requirement 3 will indeed be satisfied. If so, Requirement 3 will indeed be satisfied and we
can continue with the MWD approach. Since no multiplication is needed all we need to do is
weaken w by 1:

r+2y+3z+5w>5
T+ 2y+3z+4w >4

Wkn. w by 1 (16)
We can see that the reduced reason from MWD in Equation (16) is stronger than the
one from division-based reduction Equation (15).

4.2 Multiply and Weaken Indirect (MWI)

While MWD always directly weakens the reason literal ¢,, another approach is possible when
{,. is saturated, i.e. if its coefficient is at least as high as the degree of the constraint. Instead
of weakening ¢, directly, we can lower the degree by weakening a different non-falsified
literal, and then apply saturation. This lowers £,.’s coefficient to the degree of the constraint,
effectively giving ¢, the same coefficient as if it was weakened. In this case, we weaken
two literals “for the price of one”. Other than the different weakening approach followed
by saturation of the reason constraint, MWI applies the same operations as MWD. We
continue Example 12:

» Example 13. Instead of weakening w directly by 1, we can instead weaken the non-falsified
literal z by 1 and then saturate Cg, so that w gets the desired coefficient 4.

r+2y+3z2+5w>5
r+2y+2z+5w >4
T+2y+2z+4w >4 Sat. (17)

Wkn. z by 1

Clearly, since the coefficient of z is lower, the reduced reason in Equation (17) is stronger
than the one obtained by MWD in Equation (16).

Note that constraints obtained by MWI imply those obtained by MWD, as the only
difference in both routines is that some coefficients are lowered for MWI, while the degree in
the reduced reason remains exactly the same.

27:11

SAT 2025

27:12

393

394
395
396
397
398
399
400
401

402

403

404
405
406
407

408

Improving Reduction Techniques in Pseudo-Boolean Conflict Analysis

4.3 Combining MWD, MWI, and division-based reduction

We present the novel MW variants in Algorithm 3. On line 3 we check Equation (14) to see
if Requirement 3 will hold after MWD. If it does, we multiply the constraint and calculate
the amount we directly weaken ¢, by on line 17. Otherwise, we use a fallback reduction,
in our case this is division-based reduction from Algorithm 2. Note that this allows us
to combine the division-based reduction variants, AW and WS, with the saturation-based
variants, MWD and MWI. Then from line 9 to 16, if the reason literal is saturated, we
apply indirect weakening and saturation. We perform the final step of direct weakening and
saturate again. In this fashion, we use MWI in combination with MWD since there is no
guarantee that only MWI will always sufficiently reduce the reason coefficient.

Algorithm 3 reduceSaturation

Input: Reason C,.,,, conflict C,, reason literal ¢,., partial assignment p
Output: Tuple of reduced C,4, and (potentially multiplied) C.,

CTSTL % Coeﬁ(c"'81’£7 KT)

Ceo < coeff(Ceo, br)

if [Ceo —‘ - slack(Cran, p) + p - slack(Ceo, p) < 0 then

Crsn

N =

w

4 Crsn — ";ﬁ—‘ . Crsn
5 Cco — U Oco
6 a < ’V%-‘ *Crsn — W Ceo
7 else
8 L return reduceDivision(Crsp, Ceo, by, p)
9 if ¢4y, > 0crsn then
10 for ¢; € C,s, with coefficient c; A ¢; ¢ p do
11 if ¢; > a then
12 Crsn < weaken(Chrsp, b, @)
13 a<+ 0
14 else
15 Crsn + weaken(Crsn, L;, ¢;)
16 o~ a—c
17 Crsn < saturate(Chrsp)

18 Crgp — weaken(Crsn, by, @)
19 return (saturate(Crgp), Ceo)

5 Experimental Evaluation

In this section, we evaluate the impact of the proposed techniques on solver performance.
We implemented our techniques into Ezact 2.1.0 [11]3, which is a fork of RoundingSat [12].
We use three benchmark sets:

KNAP crafted knapsack (783 instances) [22, 9]

DEC-LIN the decision linear track of the PB’24 competition (398 instances)

3 The earlier version of Ezact submitted to the PB’24 competition already incorporated these techniques

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

O. Lomis, J. Devriendt, H. Bierlee, and T. Guns

OPT-LIN the optimisation linear track of the PB’24 competition (489 instances)

For KNAP the solver is given a memory limit 8GB of RAM and a timeout of 600 seconds.

For DEC-LIN and OPT-LIN the solver is given a memory limit of 31GB of RAM and a
timeout of 3600 seconds as in the PB’24 competition. The KNAP benchmark set is added
because each instance consists of a single constraint, which puts a heavy emphasis on learning
strong constraints. Our experiments were run on a cluster with 32 INTEL(R) XEON(R)
SILVER 4514Y (2GHz) CPUs with 256GB of shared memory. We run each configuration of
the solver with 5 seeds. Our figures are plotted with performance on the z-axis and solve
time on the y-axis. Optimisation instances are considered solved if an optimal solution is
found and it is proven that no better exists. We use the results from the five seeds to plot
95% confidence bands to visualize potential variance in solve-times, with a solid line for the
median. The implementation and run logs are included as supplemental material.

5.1 Individual techniques

Our first experiment compares each individual technique (i.e. the WS, AW, MWD, and
MWD+MWI reduction methods) to Ezact as a baseline. For the division-based techniques we

see that on KNAP in Figure 1a, WS solves more instances and AW solves some instances faster.
We also see positive results when it comes to the saturation-based techniques in Figure 1b.

MWD and MWD+MWI both perform similarly, while outperforming the baseline. On
DEC-LIN we see similar trends for the division-based techniques in Figure 2a. WS still

solves more instances than the baseline and AW mostly helps solving some instances faster.

For the saturation-based techniques we do see in Figure 2b a different trend compared to
KNAP. While MWD still helps improve the performance of the solver, MWD-+MWI shows a
negative performance. This unexpected result is interesting, since we know MWD-+MWI
dominates MWD from a theoretical perspective. On OPT-LIN we do not see much of a
difference either way for the division-based techniques in Figure 3a, but the performance
marginally worsens for the saturation-based techniques in Figure 3b.

We believe the smaller impact of AW is due to how each technique changes the constraint.

WS only lowers one coefficient while keeping everything else the same, while AW increases
the degree as well as a coefficient. The increase in the degree could however lead to fewer
saturation opportunities after addition with the conflict constraint, reducing the impact. On
the other hand, lowering a coefficient via WS may lead to fewer variable cancellations and
in turn less saturation after addition, though the odds for cancellation on non-propagated
literals may be relatively smaller. In the end, both techniques show only moderate impact
on the selected benchmarks.

600 600
Solvers Solvers
—_ Exact+Ws — | — Exact+MwWD
3 500 Exact+AW 3 500 Exact+MWD+MWI
c —— Exact c —— Exact
S 400 S 400
o}]
2)
o 300 @ 3001
£ E
=]]
o 200 © 2007
= =
(o] o
v 100 1001
600 620 640 660 680 700 600 620 640 660 680 700
Number of instances solved Number of instances solved

(a) KNAP (b) KNAP

Figure 1 Comparing individual division- and saturation-based techniques on KNAP.

27:13

SAT 2025

27:14

443

444
445
446
447
448

449

450
451
452
453
454
455
456
457
458
459
460

461

Improving Reduction Techniques in Pseudo-Boolean Conflict Analysis

Solvers Solvers
—_ Exact+WS —_ —— Exact+MWD
% 30001 __ Exact % 3000) __ Exact
S 2500 — Exact+AW §2500 —— Exact+MWD+MWI
[
L2000
[
£ 1500
5
L1000
o
9 500
220 240 260 280 220 240 260 280
Number of instances solved Number of instances solved
(a) DEC-LIN (b) DEC-LIN

Figure 2 Comparing individual division- and saturation-based techniques on DEC-LIN.

35001 soivers 3500 Solvers
—_ — Exact — — Exact
2 3000 Exact+Ws v 30001 gractemwn
§ 25001~ BactHAW §2500 —— Exact+MWD+MWI
Q
£ 2000

= 7
L1000 7/
o

Y 500

=

200 210 220 230 240 250 200 210 220 230 240 250
Number of instances solved Number of instances solved

(a) OPT-LIN (b) OPT-LIN

Figure 3 Comparing individual division- and saturation-based techniques on OPT-LIN.

5.2 Combined techniques

In our second experiment we evaluate how combining the different techniques as shown
in Section 4.3 impacts the empirical runtime of PB solvers. Additionally, we test an
implementation of the combined division-based techniques, WS+AW, on another solver,
namely the PB’24 competition version of RoundingSat, to see how it behaves in different
solvers. Implementing the saturation-based techniques in RoundingSat would have required
more extensive changes due to overflows after multiplication.

The results are summarised in Table 1. On KNAP, combining all the techniques has a
compounding effect for both solvers. On DEC-LIN, the results are less clear. Fract+WS+AW
does perform very well, which might initially seem surprising since according to Proposition 11
applying AW means less WS is possible. RoundingSat+WS+AW on the other hand has
minor impact on RoundingSat for DEC-LIN. Still, it seems both techniques can be combined
effectively. The same cannot be said when mixing the division- and saturation-based
techniques. We hypothesize that since WS+AW improves division-based reduction, a better
heuristic than Equation (14) for the saturation-based techniques is necessary. It may be
that WS+AW is most effective in many cases where MWD is actually possible, thus the
improvements from WS+AW carry over to WS+AW-+MWD. On OPT-LIN, the choice
of configuration of the techniques still does not seem to have much impact, with similar
performance to the configurations using an individual technique.

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

485

486

487

488

489

490

491

492

493

O. Lomis, J. Devriendt, H. Bierlee, and T. Guns

Solved | KNAP (783) | DEC-LIN (398) | OPT-LIN (489)
FEzact 664 282 250
Ezact+WS 674 284 249
Eract+AW 666 282 248
Exact+WS+AW 683 287 247
Ezact+MWD 687 285 248
FExact+MWD+MWI 685 275 248
Exact+WS+AW+MWD 695 284 248
Ezact+WS+AW+MWD+MWI 698 280 249
RoundingSat 691 281 253
RoundingSat+WS+AW 709 282 251

Table 1 Median number of solved instances for different solver configurations across benchmarks.

6 Conclusion and Future Work

We presented novel techniques to generate stronger reduced constraints in both division-
based [12] and saturation-based [18] reduction methods. As in established work [20], we
can indeed prove dominance relationships between the various reduction methods, which
guarantee that reduced constraints obtained from one are at least as strong as those from
another. The experiments show that stronger reduced constraints can improve the solver
performance for different solvers and benchmarks, but not uniformly across all problems.
While there are improvements on crafted knapsack benchmarks, and the competition decision
benchmark for Ezact, we observe little difference on competition optimisation benchmarks.
Perhaps more surprisingly, in competition decision benchmarks we see a case of worsening
performance for MWD+MWTI compared to MWD, despite their dominance relationship.

Hence our theoretical results provide a better understanding of reduction methods and
the freedom there is in reducing constraints before addition. Empirically there is a lesser
understood relationship between the strength of the reduced reason constraint, the strength
of the learned constraint after all iterations of constraint addition in the conflict analysis, and
the effect of the learned constraints on solver performance. However, these relationships are
complex, because they involve the reduction and resolution of multiple reason constraints with
the conflict constraint. With the insights of the paper we also see avenues to strengthen the
reduced constraints further. For example, in division-based reduction, relaxing Requirement 2
to Requirement 3 (as in saturation-based reduction) could lead to a smaller divisor or an
increase in the amount of superfluous and anti-superfluous literals.

We also saw how some combinations of reduction techniques can be effective, but they
use heuristics, e.g. to choose between division- and saturation-based reduction for specific
constraints. These heuristics are much less studied and can have a big impact on empirical
performance which deserves further study.

—— References

1 Gilles Audemard and Laurent Simon. On the glucose SAT solver. Int. J. Artif. Intell. Tools,
27(1):1840001:1-1840001:25, feb 2018. doi:10.1142/S0218213018400018.

2 Danel Le Berre, Pierre Marquis, Stefan Mengel, and Romain Wallon. On Irrelevant Literals
in Pseudo-Boolean Constraint Learning. In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, pages 1148-1154, jul 2020. arXiv:2012.04424,
doi:10.24963/ijcai.2020/160.

27:15

SAT 2025

https://doi.org/10.1142/S0218213018400018
https://arxiv.org/abs/2012.04424
https://doi.org/10.24963/ijcai.2020/160

27:16

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

545

Improving Reduction Techniques in Pseudo-Boolean Conflict Analysis

10

11

12

13

14

15

16

17

18

19

20

21

Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2. J. Satisf. Boolean Model.
Comput., 7(2-3):59-6, 2010. doi:10.3233/sat190075.

Sam Buss and Jakob Nordstrém. Proof complexity and SAT solving. In Armin Biere, Marijn
Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability - Second Edition,
volume 336 of Frontiers in Artificial Intelligence and Applications, pages 233-350. I0OS Press,
2021. doi:10.3233/FAIA200990.

Donald Chai and Andreas Kuehlmann. A fast pseudo-boolean constraint solver. In Proceedings
of the 40th Annual Design Automation Conference, pages 830-835, Anaheim CA USA, jun
2003. ACM. doi:10.1145/775832.776041.

Donald Chai and Andreas Kuehlmann. A fast pseudo-boolean constraint solver. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 24:305-317, 2005. URL:
https://api.semanticscholar.org/CorpusID:41594962, doi:10.1109/TCAD.2004.842808.

Stephen A. Cook. The complexity of theorem-proving procedures. In Michael A. Harrison,
Ranan B. Banerji, and Jeffrey D. Ullman, editors, Proceedings of the 3rd Annual ACM
Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA, STOC ’71,
pages 151-158, New York, NY, USA, 1971. ACM. doi:10.1145/800157.805047.

W. Cook, C.R. Coullard, and Gy. Turdn. On the complexity of cutting-plane proofs. Discrete
Applied Mathematics, 18(1):25-38, sep 1987. doi:10.1016/0166-218X(87)90039-4.

Jo Devriendt. Pisinger’s knapsack instances in opb format, jul 2020. doi:10.5281/zenodo.
3939055.

Jo Devriendt. Watched Propagation of 0-1 Integer Linear Constraints. In Helmut Simonis,
editor, Principles and Practice of Constraint Programming, pages 160-176, Cham, 2020.
Springer International Publishing. doi:10.1007/978-3-030-58475-7_10.

Jo Devriendt. Exact: Evaluating cutting-planes learning at the PB’24 competition. Slides,
2024.

Jan Elffers and Jakob Nordstréom. Divide and Conquer: Towards Faster Pseudo-Boolean
Solving. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, pages 1291-1299, Stockholm, Sweden, jul 2018. International Joint Conferences
on Artificial Intelligence Organization. doi:10.24963/ijcai.2018/180.

Jan Elffers and Jakob Nordstrom. RoundingSat 2019: Recent work on PB solving.
https://slides.com/jod/deck-26-29-32, jul 2019.

Armin Haken. The intractability of resolution. Theor. Comput. Sci., 39:297-308, 1985.
Third Conference on Foundations of Software Technology and Theoretical Computer Science.
doi:10.1016/0304-3975(85)90144-6.

John N Hooker. Generalized resolution and cutting planes. Annals of Operations Research,
12:217-239, 1988.

Hannes Thalainen, Jeremias Berg, and Matti Jarvisalo. Ipbhs in pb’24 competition. Slides,
2024.

Christoph Jabs, Jeremias Berg, and Matti Jarvisalo. PB-OLL-RS and MIXED-BAG in
Pseudo-Boolean Competition 2024. PB Competition 2024, 2024.

Daniel Le Berre, Pierre Marquis, and Romain Wallon. On Weakening Strategies for PB
Solvers. In Luca Pulina and Martina Seidl, editors, Theory and Applications of Satisfiability
Testing — SAT 2020, pages 322-331, Cham, 2020. Springer International Publishing. doi:
10.1007/978-3-030-51825-7_23.

J.P. Marques Silva and K.A. Sakallah. Grasp-a new search algorithm for satisfiability. In
Proceedings of International Conference on Computer Aided Design, pages 220-227, 1996.
doi:10.1109/ICCAD.1996.569607.

Gioni Mexi, Timo Berthold, Ambros Gleixner, and Jakob Nordstrom. Improving conflict
analysis in mip solvers by pseudo-boolean reasoning. arXiv preprint arXiv:2307.14166, 2023.
do0i:10.48550/arXiv.2307.14166.

Shiwei Pan, Yiyuan Wang, Shaowei Cai, Jiangnan Li, Wenbo Zhu, and Minghao Yin.
Cashwmaxsat-disjcad: Solver description. MazSAT Evaluation 2024, 2024:25, 2024.

https://doi.org/10.3233/sat190075
https://doi.org/10.3233/FAIA200990
https://doi.org/10.1145/775832.776041
https://api.semanticscholar.org/CorpusID:41594962
https://doi.org/10.1109/TCAD.2004.842808
https://doi.org/10.1145/800157.805047
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.5281/zenodo.3939055
https://doi.org/10.5281/zenodo.3939055
https://doi.org/10.5281/zenodo.3939055
https://doi.org/10.1007/978-3-030-58475-7_10
https://doi.org/10.24963/ijcai.2018/180
https://doi.org/10.1016/0304-3975(85)90144-6
https://doi.org/10.1007/978-3-030-51825-7_23
https://doi.org/10.1007/978-3-030-51825-7_23
https://doi.org/10.1007/978-3-030-51825-7_23
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.48550/arXiv.2307.14166

546

547

548

549

O. Lomis, J. Devriendt, H. Bierlee, and T. Guns

22

23

David Pisinger. Where are the hard knapsack problems? Comput. Oper. Res., 32(9):2271-2284,
2005. doi:10.1016/j.cor.2004.03.002.

Roussel, Olivier. Pseudo-Boolean Competition of 2024. https://www.cril.univ-artois.fr/
PB24/.

27:17

SAT 2025

https://doi.org/10.1016/j.cor.2004.03.002
https://www.cril.univ-artois.fr/PB24/
https://www.cril.univ-artois.fr/PB24/
https://www.cril.univ-artois.fr/PB24/

	1 Problem setting
	2 Preliminaries
	2.1 Conflict-Driven Pseudo-Boolean Search
	2.2 PB Conflict Analysis
	2.3 RoundingSat-style Reduction

	3 Division-Based Reduction Variants
	3.1 Weaken Superfluous (WS)
	3.1.1 Link to Mixed Integer Rounding (MIR)

	3.2 Anti-Weaken Anti-Superfluous (AW)
	3.3 Combining WS and AW reduction

	4 Saturation-Based Reduction Variants
	4.1 Multiply and Weaken Direct (MWD)
	4.2 Multiply and Weaken Indirect (MWI)
	4.3 Combining MWD, MWI, and division-based reduction

	5 Experimental Evaluation
	5.1 Individual techniques
	5.2 Combined techniques

	6 Conclusion and Future Work

