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Abstract11

Recent pseudo-Boolean (PB) solvers leverage the cutting planes proof system to perform SAT-12

style conflict analysis during search. This process learns implied PB constraints, which can prune13

later parts of the search tree and is crucial to a PB solver’s performance. A key step in PB14

conflict analysis is the reduction of a reason constraint, which caused a variable propagation that15

contributed to the conflict. While necessary, reduction generally makes the reason constraint less16

strong. Consequently, different approaches to reduction have been proposed, broadly categorised as17

division- or saturation-based, with the aim of preserving the strength of the reason constraint as18

much as possible.19

This paper proposes two novel techniques in each reduction category. We theoretically show20

how each technique yields reason constraints which are at least as strong as those obtained from21

existing reduction methods. We then evaluate the empirical effectiveness of the reduction techniques22

on hard knapsack instances and the most recent PB’24 competition benchmarks.23
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1 Problem setting31

Although the Boolean satisfiability (SAT) problem is NP-complete [7], in recent decades32

conflict-driven clause learning (CDCL) solvers [19, 1] routinely solve problems with up to33

millions of variables. However, the resolution proof system on which they are based may34

require exponential solve-time for some problems, such as the pigeonhole problem [14]. For35

this reason, higher-level proof systems pose a promising alternative, such as the cutting36

planes proof system [8]. Cutting planes form the underlying proof system of conflict-driven37

pseudo-Boolean (PB) constraint solvers, where we especially focus on PB constraints that38

are (weighted) linear inequalities over Boolean variables. The cutting planes proof system39

generalises the resolution proof system by using such PB constraints instead of clauses, which40

allow for more powerful reasoning. In theory this means that PB solvers can solve problems41

like the pigeonhole problem in polynomial time, where CDCL-based solvers would need42

exponential time. The effectiveness of good PB reasoning has been shown in the most recent43
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27:2 Improving Reduction Techniques in Pseudo-Boolean Conflict Analysis

PB competition of 2024 [23], where PB solvers such as RoundingSat [12] and its offspring44

Exact [11] show top performance with their native implementation of the cutting planes45

proof system. Exact and RoundingSat are not only used as stand-alone solvers, but also46

as PB oracles in other PB solvers such as Hybrid-CASHWMaxSATDisjCadSP+Exact [21],47

mixed-bag [17] and IPBHS [16].48

However, there still lies a difficulty for PB solvers to use the improved reasoning power49

of the cutting planes proof system effectively. In CDCL, the resolution of two conflicting50

clauses can simply be done by taking the union of two conflicting clauses and leaving out the51

propagated variable. While resolution can be generalised, PB solvers require an additional52

so-called reduction step to ensure the eventual learned constraint prevents the original53

conflict [5]. Additionally, the stronger the learned constraint the more pruning it will be able54

to do, hence the need for reduction techniques that keep the reason constraint as strong as55

possible. Consequently, various types of reduction have been investigated [12, 18, 20]. In56

this work we theoretically motivate and investigate four new reduction methods that are at57

least as strong as existing reduction methods.58

Our contributions First, we propose two novel variants of division-based reduction,59

namely Weaken Superfluous (WS) and Anti-Weakening of non-falsifieds (AW). Both exploit60

the rounding behaviour of the division operation in division-based reduction. We prove how61

the reduced constraints using these techniques are at least as strong as the ones obtained62

from using standard division-based reduction. Furthermore, we show how after applying the63

WS technique, the division operation is equivalent to the Mixed-Integer Rounding (MIR)64

operation, even though generally MIR dominates division [20]. Secondly, we propose two novel65

variants of a saturation-based reduction technique known as Multiply and Weaken (MW) [18],66

which we call Multiply and Weaken Direct (MWD) and Multiply and Weaken Indirect (MWI).67

These variants hybridize saturation- and division-based reduction by applying the former68

when favourable, using the latter as fallback. Then, we show that MWD with MWI produces69

constraints at least as strong as those from MWD alone. Finally, experiments empirically70

evaluate how the theoretically stronger reduction techniques impact solver performance on71

crafted and competition PB problems.72

The organisation of the paper is as follows. In Section 2 we review the basics of PB73

solving, starting from CDCL and working our way to the current state-of-the-art division-74

based reduction method in RoundingSat. In Section 3 and Section 4 we introduce our novel75

techniques for division- and saturation-based reduction methods respectively. Section 576

contains the results from our experiments. In Section 6 we conclude our finding and discuss77

future work.78

2 Preliminaries79

We use notation and terminology from [10]. The term pseudo-Boolean (PB) constraint refers80

to a 0-1 linear inequality. We identify 1 with true and 0 with false. A literal ℓ denotes81

either a variable x or its negation x̄ = 1 − x. We assume w.l.o.g. that all constraints82 ∑
i ciℓi ≥ δ are written in normalized form, where literals ℓi are over pairwise distinct83

variables, coefficients ci are positive integers, and δ is a positive integer called the degree.84

For a constraint C, lits(C) denotes its set of literals and coeff (ℓi, C) denotes the coefficient85

of literal ℓi. A PB constraint C with degree 1 is a clause.86

The (partial) assignment ρ is an ordered set of literals over pairwise distinct variables. A87

literal ℓ is assigned to true by an assignment ρ if ℓ ∈ ρ, assigned to false or falsified if ℓ̄ ∈ ρ,88

and is unassigned otherwise. We define the slack σ of a constraint C =
∑

i ciℓi ≥ δ under a89



O. Lomis, J. Devriendt, H. Bierlee, and T. Guns 27:3

partial assignment ρ as:90

slack(C, ρ) =

 ∑
ℓi∈lits(C),ℓ̄i ̸∈ρ

ci

− δ (1)91

In other words, the slack measures how far ρ is from falsifying the constraint. Then,92

we say that ρ falsifies C if slack(C, ρ) < 0. A pseudo-Boolean formula φ is a set of PB93

constraints. An assignment ρ is a solution to φ if ρ satisfies all constraints in φ. A formula94

is satisfiable if it has a solution.95

2.1 Conflict-Driven Pseudo-Boolean Search96

Conflict-driven PB solving generalizes the CDCL algorithm for SAT, but uses PB constraints97

instead of clauses. The state of a PB solver can be represented by a ψ and ρ, where ψ is a98

set of constraints called the constraint database. Initially, ψ is the input formula φ and ρ is99

the empty set {}.100

Given a solver state, the search loop starts with a propagation phase, which checks for101

any constraint C ∈ ψ whether it is falsified:102

slack(C, ρ) < 0, (2)103

or whether a literal ℓi in C with coefficient ci, where ℓi has not yet been assigned by ρ, is104

implied by C under ρ:105

slack(C, ρ)− ci < 0 with ℓi ̸∈ ρ, ℓ̄i ̸∈ ρ. (3)106

If condition (3) holds, C is falsified by ρ∪ ℓ̄i, so ℓi is implied by C under ρ. For an assignment107

ρ we write ℓi/C to denote that C is the reason for the propagation of ℓi, and also use the108

notation C = reason(ℓi, ρ). Each propagation can enable new propagations, continuing the109

propagation phase until condition (3) does not hold for any constraint in the database ψ or110

until condition (2) holds for at least one. Note that unlike clauses, a single PB constraint111

can propagate multiple literals, even at different propagation phases.112

If condition (2) holds for some constraint, it is considered a conflict and the constraint is113

denoted as the conflict constraint. On conflict, the solver enters a conflict analysis phase.114

During this phase, the solver derives a learned constraint which is a logical consequence of115

the current set of reason constraints combined with the conflict constraint. Crucially, the116

learned constraint must propagate a literal at some earlier search depth, hence preventing117

the current conflict from occurring again. Then, this learned constraint is added to ψ, after118

which the solver backjumps to a sufficient early search depth.119

Alternatively, if no conflict is detected, the solver extends ρ by making a heuristic decision120

to assign some currently unassigned variable. If ℓi is a decision then it has no associated121

reason constraint, which we denote by ℓi/·.122

The PB solver reports unsatisfiability whenever it learns a constraint equivalent to the123

trivial inconsistency 0 ≥ 1. If propagation does not lead to a conflict and all variables have124

been assigned, the solver reports that the input formula is satisfiable.125

2.2 PB Conflict Analysis126

In this subsection we will go into more detail about the conflict analysis phase of PB solvers,127

where the following operations are used [2, 4]:128

SAT 2025
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Addition.
Σciℓi ≥ δ Σc′

iℓ
′
i ≥ δ′

Σ(ciℓi + c′
iℓ

′
i) ≥ (δ + δ′) Add (4)129

Where we implicitly assume that the result is rewritten in normalised form.130

▶ Example 1. Addition of the constraint x+ ȳ ≥ 2 with y+z ≥ 1 yields x+y+ ȳ+z ≥ 3,131

which normalises to x+ z ≥ 2 by cancelling literals y and ȳ, where y + ȳ = 1.132

Division.
Σciℓi ≥ δ

Σ⌈ ci

d ⌉ℓi ≥ ⌈ δ
d⌉

Div. by d ∈ N0 (5)133

Multiplication.

Σciℓi ≥ δ
Σµciℓi ≥ µδ

Mul. by µ ∈ N0 (6)134

Saturation.
Σciℓi ≥ δ

Σ min(ci, δ)ℓi ≥ δ
Sat. (7)135

Weakening.

cℓ+ Σciℓi ≥ δ
(c−m)ℓ+ Σciℓi ≥ δ −m

Wkn. ℓ by m ∈ N0 (8)136

Weakening is partial when m < c, and full when m = c.137

Anti-weakening

cℓ+ Σciℓi ≥ δ
(c+m)ℓ+ Σciℓi ≥ δ

Anti-Wkn. ℓ by m ∈ N0 (9)138

Using these operations, PB solvers often implement different variants of conflict analysis,139

[6, 12, 3, 11]. We give a general outline in Algorithm 1 [20]. Conflict analysis starts from the140

conflict constraint Cco. We call the last literal of the current assignment, the reason literal141

ℓr. If it was not propagated, or ℓ̄r /∈ lits(Cco), then it did not contribute to the conflict, so142

it can be removed from the assignment ρ and we continue with the literal propagated just143

before it. If it is propagated and ℓ̄r ∈ lits(Cco), then we should replace ℓ̄r with its reason144

constraint Crsn = reason(ℓr, ρ) by addition of the two constraints [15, 4], which requires145

reducing the reason constraint as explained below. When the new Cco is propagating we146

have a learned constraint, and we can exit the conflict analysis phase.147

Algorithm 1 analyzeConflict

Input: Conflict constraint Cco, falsifying partial assignment ρ
Output: Learned constraint Cl

1 while Cco is not propagating do
2 ℓr ← last literal of assignment ρ
3 if ℓr is propagated ∧ ℓ̄r ∈ lits(Cco) then
4 Crsn ← reason(ℓr, ρ)
5 (Cred, Cco)← reduce(Crsn, Cco, ℓr, ρ)
6 Cco ← Cred + Cco

7 ρ← ρ \ {ℓr}
8 return Cco

148
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To preserve the conflict during addition of Crsn and Cco, there are two key requirements149

which make conflict-driven learning non-trivial for PB solving: The first one is that (i) adding150

Crsn to Cco should indeed eliminate ℓ̄r. Secondly, the learned constraint must propagate at151

an earlier stage, therefore (ii) it needs to remain conflicting under the current assignment.152

Since these requirements generally do not hold [4, Chapter 7], we need a reduction step,153

where (Cred, Cco) = reduce(Crsn, Cco, ℓr, ρ) [13] such that the requirements are enforced. A154

sufficient condition for (i) is that the reduced reason has the same coefficient for ℓ̄r as the155

conflict constraint has for ℓr. A sufficient condition for (ii) is that after reduction, the reduced156

reason has slack 0 or less, since slack(Cco, ρ) < 0 by definition and slack is subadditive [12]:157

adding two constraints yields a constraint with a slack at most the sum of the slacks of the158

two original constraints. Hence formally we have the following requirements:159

Cancelling Coefficients (Requirement 1) coeff (ℓr, Cred) = coeff (ℓ̄r, Cco)160

Negative Slack Condition (Requirement 2) slack(Cred, ρ) ≤ 0161

Our work focuses on this reduction step. To compare between two outcomes of a reduction,162

we say that C is stronger than C ′ when C implies C ′ (i.e. every satisfying variable assignment163

to C is also a satisfying assignment to C ′) but not the other way around. C is rationally164

stronger than C ′ when the former implies the latter and not the other way around, considering165

assignments of rational values between the closed interval [0, 1] to the variables. We say166

reduction method A dominates reduction method B, with reduced constraints CA
red and CB

red167

respectively, when for any input CA
red rationally implies CB

red.168

We already mentioned that slack is subadditive under addition. Additionally, slack169

remains unchanged when weakening a non-falsified literal or anti-weakening a falsified literal;170

slack increases when weakening a falsified literal or anti-weakening a non-falsified literal;171

slack is multiplied by m when multiplying a constraint by m. Hence, to decrease the172

slack of an individual non-conflicting reason constraint, at least one division or saturation173

step is necessary. Saturation-based reduction was the first successful implementation of174

cutting planes for PB solving [3], however most state-of-the-art solvers opt for division-based175

reduction [12, 17, 11, 21]. We will now look more in depth at division-based reduction.176

2.3 RoundingSat-style Reduction177

We describe the division-based reduction approach proposed by RoundingSat [12], which178

consists of three steps.179

Weaken Non-Divisible Non-Falsifieds (Step 1) In the first step, we weaken all non-falsified180

literals that have a coefficient not divisible by crsn, the reason literal ℓr’s coefficient, so181

that all non-falsified literals become divisible by crsn. In the original RoundingSat paper,182

these literals were fully weakened, but in the most recent implementation of RoundingSat1,183

non-falsified literals with coefficient ci are partially weakened by ci mod crsn, i.e. to the184

largest multiple of crsn smaller than ci. This is a less aggressive version of weakening185

also discussed in [18].186

Divide (Step 2) In the second step, we divide the resulting constraint by crsn and round187

up all coefficients as per Equation (5). Since the previous weakening guaranteed that all188

non-falsified literals are divisible by crsn, we have coeff (ℓr, Crsn) = 1 and no non-falsified189

literals are rounded up during division, which would have increased the slack. Furthermore,190

1 This recent version also participated in the last PB competition [23].

SAT 2025
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the authors have proven after this division step the slack is at most 0, because the divisor191

is larger than the slack [12, Proposition 3.1], hence satisfying Requirement 2. From their192

work it follows that:193

▶ Corollary 2. Given a constraint Crsn with slack σ and a divisor d ∈ N0, if the194

coefficients of all non-falsified literals are divisible by d, then the slack after division is195 ⌊
σ
d

⌋
.196

Multiply (Step 3) In the third step, given that ℓr’s coefficient is now 1, Requirement 1 can197

be satisfied by multiplying the reason constraint by the coefficient of the negated reason198

literal in the conflict cco.199

▶ Example 3. Given the reason constraint Crsn = x+ 3y+ 3z+ 5w ≥ 6, a conflict constraint200

Cco = 4y + 4w̄ ≥ 4, an assignment ρ = {x̄/·, ȳ/·, z/Crsn, w/Crsn}, reason literal ℓr = w and201

divisor d = coeff (ℓr, Crsn) = 5.202

Step 1 of this method is to weaken the non-divisible non-falsified literals. So z is weakened203

by 3. Then in Step 2, the constraint is divided by 5:204

x+ 3y + 3z + 5w ≥ 6
x+ 3y + 5w ≥ 3 Wkn. z by 3

x+ y + w ≥ 1 Div. by 5 (10)205

Note that Requirement 2 is now already satisfied. To satisfy Requirement 1 we need to206

perform Step 3 by multiplying 1x + 1y + 1w ≥ 1 by coeff (ℓ̄r, Cco) = 4 to get the reduced207

reason Cred = 4x + 4y + 4w ≥ 4, which satisfies Requirements 1 and 2. To obtain a new208

learned constraint we then add the reduced reason to Cco and get Cl = 4x+ 4y ≥ 4. This209

learned constraint will propagate y as soon as x̄ is decided, thereby preventing the conflict,210

and possibly preventing similar conflicts in later search.211

3 Division-Based Reduction Variants212

In this section we propose two new variants of division-based reduction, based on the above.213

Notice that since the reduced constraint Cred must be implied by the reason constraint Crsn,214

Cred is at best as strong as Crsn. Hence, our goal is to design a reduction method such that215

Cred remains as strong as possible.216

In Sections 3.1 and 3.2, we will exploit Corollary 2 and the behaviour of rounding217

during division-based reduction in two novel techniques. For each technique we show218

that Requirements 1 and 2 still hold and that each technique dominates division-based219

reduction without the technique. In Section 3.3, we show how the techniques interact and220

can be combined.221

3.1 Weaken Superfluous (WS)222

When dividing a constraint with degree δ by divisor d, the post-division degree is δ′ = ⌈ δ
d⌉.223

Due to the upward rounding, we can often lower δ by some amount θ without changing224

δ′. Specifically, δ′ = ⌈ δ
d⌉ = ⌈ δ−θ

d ⌉ for any θ ≤ (δ − 1) mod d. After Step 1 (weakening of225

non-divisible non-falsifieds) of the above division-based reduction, we set θ maximally to get226

θ = (δ − 1) mod d. We define a superfluous literal as:227

▶ Definition 4 (Superfluous Literal). When dividing a constraint C by d, a literal ℓs with228

coefficient cs is superfluous when 0 < cs mod d ≤ θ with θ = (δ − 1) mod d.229
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Hence, we can weaken a superfluous literal ℓs by cs mod d without altering the degree δ′
230

obtained after Step 2. But now, ℓs is rounded down in Step 2, which makes the reduced231

constraint stronger. Thus we propose the WS reduction where we iteratively weaken232

superfluous literals until there are no more left. Since the non-falsifieds have already been233

weakened to be divisible, the superfluous literals are always falsified. Therefore the reason234

literal ℓr is never superfluous and its coefficient will not change compared to RoundingSat-235

style reduction. Thus Requirement 1 will still be satisfied after Step 3 as when applying this236

reduction.237

▶ Example 5. Continuing with Example 3, after Step 1, we can weaken by a total of238

θ = (δ − 1) mod d = (3− 1) mod 5 = 2 before Step 2. Thus x is a superfluous literal, so we239

weaken it as well.240

x+ 3y + 3z + 5w ≥ 6
x+ 3y + 5w ≥ 3 Wkn. z by 3

3y + 5w ≥ 2 Wkn. x by 1

y + w ≥ 1 Div. by 5 (11)241

The final constraints from Equations (10) and (11) now both satisfy Requirement 2 and242

after multiplication both will also satisfy Requirement 1, but the latter is stronger than the243

former.244

We now prove division-based reduction with WS dominates division-based reduction245

without WS.246

▶ Proposition 6. Let d ∈ N0 be some divisor. Let C = csℓs +
∑
ciℓi ≥ δ be a constraint247

with ℓs a superfluous literal, so cs mod d ≤ θ. Let C ′ be the constraint after division by d.248

Let CW S be the constraint after weakening the superfluous literal ℓs to the nearest divisible249

integer (so by cs mod d), and then division by d.250

CW S implies C ′ and the slack of CW S is at most that of C ′.251

Proof. We know that after division C ′ =
⌈

cs

d

⌉
ℓs +

∑ ⌈
ci

d

⌉
ℓi ≥

⌈
δ
d

⌉
and252

CW S =
⌈

cs−cs mod d
d

⌉
ℓs +

∑ ⌈
ci

d

⌉
ℓi ≥

⌈
δ−cs mod d

d

⌉
. Note that

⌈
cs−cs mod d

d

⌉
=

⌈
cs

d

⌉
− 1 and253

that
⌈

δ−cs mod d
d

⌉
=

⌈
δ
d

⌉
(since cs mod d ≤ θ). Hence, CW S only differs from C ′ in that the254

coefficient of ℓs is rounded down. This means antiweaken(CW S , ℓs, 1) = C ′ and thus CW S
255

implies C ′. ◀256

From the proof, antiweaken(CW S , ℓs, 1) = C ′, so after division, the slack of the constraint257

where a superfluous literal is weakened is at most that of the non-weakened variant. So258

weakening superfluous literals preserves whether Requirement 2 is satisfied after division.259

3.1.1 Link to Mixed Integer Rounding (MIR)260

It has been proposed to replace the division operation (Step 2) in division-based reduction261

by the Mixed Integer Rounding (MIR) operation [20]:262

Mixed Integer Rounding (MIR).

Σiciℓi ≥ δ∑
ℓ∈I1

⌈
ci

d

⌉
ℓi +

∑
ℓj∈I2

(
⌊ cj

d

⌋
+ cj mod d

(δ−1) mod d+1 )ℓj ≥
⌈

δ
d

⌉ MIR by d ∈ N0
(12)263

SAT 2025
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with264

I1 = {ℓi | ci mod d > (δ − 1) mod d ∨ ci mod d = 0},265

266

I2 = {ℓj | 0 < cj mod d ≤ (δ − 1) mod d},267

To obtain normalised PB constraints with integer coefficients, MIR is followed by multi-268

plication by ((δ − 1) mod d) + 1.269

It was shown that division-based reduction using the MIR operation in Step 2 dominates270

division-based reduction with the division operation [20]. However, we can show that if271

there are no superfluous literals, the two reduction variants are equivalent. Consequently,272

after weakening superfluous literals, using MIR in Step 2 provides no advantage anymore273

compared to using division.274

▶ Proposition 7. Let C =
∑
ciℓi ≥ δ be a constraint and d ∈ N0 a divisor such that none275

of the literals ℓi are superfluous in C. Let CDIV and CMIR be the constraints obtained by276

applying the division and the MIR operation with d, respectively. Then CDIV = CMIR.277

Proof. As no literals are superfluous, for all literals it holds by Definition 4 that ci mod d ≥ θ278

or ci mod d = 0. Hence, I2 = ∅. In that case, Equation (12) simplifies to Equation (5), so279

CDIV = CMIR. ◀280

This means that, when there are no superfluous literals (e.g. after removing them with WS)281

division and MIR are equivalent.2 This is not the case when there are superfluous literals282

in the constraint. E.g. WS followed by division on constraint x + 2y ≥ 2 with divisor 2283

is stronger than just MIR on the same constraint. The opposite can also be true, e.g. for284

constraint x + y + 2z ≥ 2 with divisor 2. There could be other cases where just the MIR285

operation, without doing WS first, may be stronger than WS combined with the division286

operation. Further analysis is left for future work.287

3.2 Anti-Weaken Anti-Superfluous (AW)288

When dividing a constraint with slack σ by divisor d, the post-division slack is
⌊

σ
d

⌋
according289

to Corollary 2. Due to downward rounding, we can often increase σ by some amount κ without290

changing
⌊

σ
d

⌋
. Specifically,

⌊
σ
d

⌋
=

⌊
σ+κ

d

⌋
for any 0 ≤ κ ≤ (d− σ − 1) mod d. During Step 1291

we set κ maximally to get κ = (d− σ − 1) mod d. We define an anti-superfluous literal as:292

▶ Definition 8 (Anti-Superfluous Literal). When dividing a constraint C with slack σ by d, a293

non-falsified literal ℓaw with coefficient caw is anti-superfluous when 0 < d− (caw mod d) ≤ κ294

with κ = (d− σ − 1) mod d.295

During the weakening of non-divisible non-falsifieds, we can then anti-weaken ℓaw by d−296

(caw mod d). This makes the literal divisible without it being weakened, while still not297

increasing the slack as part of division by d. Note that we can repeat this step until there298

are no more anti-superfluous literals left.299

▶ Example 9. We can again look at the conflict from Example 3, but now apply AW.300

Instead of weakening z by 3, we can anti-weaken it by 2 and then divide by 5.301

2 Up to multiplication by a constant factor, which is needed for MIR.
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x+ 3y + 3z + 5w ≥ 6
x+ 3y + 5z + 5w ≥ 6 Anti-Wkn. z by 2

x+ y + z + w ≥ 2 Div. by 5 (13)302

The final constraints from Equations (10) and (13) now both satisfy Requirement 2 and303

after multiplication will also satisfy Requirement 1, but the latter is stronger than the former.304

We now prove that division-based reduction with anti-weakening non-falsifieds dominates305

division-based reduction without.306

▶ Proposition 10. Let d be some divisor, ρ a partial assignment, C = cawℓaw +
∑

i ciℓi ≥ δ307

a constraint with slack σ, and ℓaw an anti-superfluous literal, so 0 < d− (caw mod d) ≤ κ.308

Let C ′ be the constraint after Steps 1 and 2. Let CAW be the constraint after Steps 1309

and 2 where during Step 1 ℓaw is anti-weakened by d− (caw mod d) instead of weakened by310

caw mod d.311

CAW implies C ′ and the slack of CAW is equal to that of C ′.312

Proof. Since the total amount that is anti-weakened is at most κ, we know that the slacks of313

C ′ and CAW are still equal after Step 2. Then, since ℓaw is anti-weakened for CAW it holds314

that coeff (ℓaw, C
′) + 1 = coeff (ℓaw, C

AW ). And since the slack of the two constraints is the315

same, the following equality holds for their respective degrees δ′ + 1 = δAW . This means316

weaken(CAW , ℓaw, 1) = C ′ and thus CAW implies C ′. ◀317

Hence, we propose the AW reduction where we iteratively anti-weaken anti-superfluous318

literals until there are no more left. From Proposition 10 it follows that anti-weakening does319

not increase the slack (as it yields constraints that are at least as strong), preserving Re-320

quirement 2. And since in RoundingSat-style reduction the divisor is the reason literal’s321

coefficient, the reason literal is never anti-superfluous and will thus be unchanged, satisfy-322

ing Requirement 1.323

3.3 Combining WS and AW reduction324

There is an interesting dynamic between the WS and AW reduction methods. Both exploit Co-325

rollary 2 in a similar way, by temporarily increasing the slack, while ensuring Requirement 2326

is not violated after division. In the context of division-based reduction, WS and AW are two327

sides of the same coin, where WS applies to falsified literals and AW to non-falsified literals.328

▶ Proposition 11. Let d be some divisor and ρ a partial assignment. Let C =
∑
ciℓi ≥ δ be329

some constraint with slack σ, before Step 1. Let κ = (d− σ − 1) mod d. Let C ′ be that same330

constraint, with degree δ′ after Step 1. Let θ = (δ′ − 1) mod d. Then θ = κ.331

Proof. Before Step 1, κ = (d − σ − 1) mod d. Weakening non-falsified literals does not332

alter this value. So after Step 1, θ = (δ′ − 1) mod d. By rearranging Equation (1) and333

replacing δ′ and since all non-falsifieds are divisible by d we get θ = (δ − 1) mod d =334

(
∑

ℓ̄i /∈ρ ci − σ − 1) mod d = (−σ − 1) mod d = (d− σ − 1) mod d. Therefore, θ = κ. ◀335

So the amount θ we can (anti-)weaken by is shared between the two techniques, i.e. if we336

weaken superfluous literals by θ′, then we only have θ−θ′ left to anti-weaken anti-superfluous337

literals.338

We can easily combine AW and WS in one divsion-based reduction approach, which we339

present in Algorithm 2. We first apply AW in lines 6 to 8, then WS in lines 10 to 14.340
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Algorithm 2 reduceDivision

Input: Reason Crsn, conflict Cco, reason literal ℓr, partial assignment ρ
Output: Tuple of reduced constraint Crsn and conflict constraint Cco

1 d← coeff (ℓr, Crsn)
2 θ ← (d− slack(Crsn, ρ)− 1) mod d
3 for ℓi ∈ lits(Crsn) do
4 α← coeff (Crsn, ℓi) mod d
5 if α ̸= 0 ∧ ℓ̄i /∈ ρ then
6 if θ − d+ α ≥ 1 then
7 θ ← θ − d+ α

8 continue
9 Crsn ← weaken(Crsn, ℓi, α)

10 for ℓi ∈ lits(Crsn) do
11 α← coeff (Crsn, ℓi) mod d
12 if 0 < α ≤ θ then
13 θ ← θ − α
14 Crsn ← weaken(Crsn, ℓi, α)

15 Crsn ← divide(Crsn, d)
16 Cred ← coeff (ℓ̄r, Cco) · Crsn

17 return (Cred, Cco)

4 Saturation-Based Reduction Variants341

In the previous section we focused on division-based reduction. In this section we will focus342

on the other family of reduction techniques: saturation-based reduction. We investigate a343

saturation-based method called Multiply and Weaken (MW) [18]. The main idea we use from344

MW is to multiply the reason and/or the conflict constraint in order to bring the coefficients345

of the reason literal in the reason crsn and conflict cco close to each other, with crsn ≥ cco.346

We develop two reduction variants, both of which use weakening in a different manner to347

satisfy Requirement 1. As for Requirement 2, the MW reduction variants use the necessary,348

but less strict, requirement:349

Weak Negative Slack Condition (Requirement 3) slack(Cred, ρ) + slack(Cco, ρ) < 0350

4.1 Multiply and Weaken Direct (MWD)351

The first MW reduction variant, Multiply and Weaken Direct (MWD), applies the following352

operations. First, multiply Crsn by
⌈

cco

crsn

⌉
and Cco by µ = max(1,

⌊
crsn

cco

⌋
). Then, weaken353

the reason literal ℓr in the multiplied reason constraint by the exact amount needed to354

satisfy Requirement 1, i.e. by
⌈

cco

crsn

⌉
· crsn − µ · cco. However, these operations will only355

yield a reduced reason and conflict constraint (i.e. meeting Requirement 3) if the following356

condition holds:357

⌈
cco

crsn

⌉
· slack(Crsn, ρ) + µ · slack(Cco, ρ) < 0 (14)358
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If Equation (14) does hold, then Requirement 3 is guaranteed to be satisfied, since the359

multiplications of the slack are taken into account and weakening of non-falsified literals360

does not increase the slack. If Equation (14) does not hold, MWD reduction uses a fallback361

reduction method instead. In some cases, MWD yields stronger constraints than division-362

based reduction:363

▶ Example 12. Given a reason constraint Crsn = x+ 2y+ 3z+ 5w ≥ 5, a conflict constraint364

Cco = 3u+ 4w̄ + 5y ≥ 7, an assignment ρ = {x̄/·, ȳ/·, w/Crsn} and a reason literal ℓr = w.365

We show Steps 1 and 2 for division-based reduction:366

x+ 2y + 3z + 5w ≥ 5
x+ 2y + 5w ≥ 2 Wkn. z by 3

x+ y + w ≥ 1 Div. by 5 (15)367

For MWD reduction, we first need to check if it is even possible to satisfy Requirement 3.368

Since
⌈

cco

crsn

⌉
· slack(Crsn, ρ) +µ · slack(Cco, ρ) =

⌈ 4
5
⌉
· 3 + max(1,

⌊ 5
4
⌋
) · (−4) = 3− 4 = −1 <369

0 Requirement 3 will indeed be satisfied. If so, Requirement 3 will indeed be satisfied and we370

can continue with the MWD approach. Since no multiplication is needed all we need to do is371

weaken w by 1:372

x+ 2y + 3z + 5w ≥ 5
x+ 2y + 3z + 4w ≥ 4 Wkn. w by 1 (16)373

We can see that the reduced reason from MWD in Equation (16) is stronger than the374

one from division-based reduction Equation (15).375

4.2 Multiply and Weaken Indirect (MWI)376

While MWD always directly weakens the reason literal ℓr, another approach is possible when377

ℓr is saturated, i.e. if its coefficient is at least as high as the degree of the constraint. Instead378

of weakening ℓr directly, we can lower the degree by weakening a different non-falsified379

literal, and then apply saturation. This lowers ℓr’s coefficient to the degree of the constraint,380

effectively giving ℓr the same coefficient as if it was weakened. In this case, we weaken381

two literals “for the price of one”. Other than the different weakening approach followed382

by saturation of the reason constraint, MWI applies the same operations as MWD. We383

continue Example 12:384

▶ Example 13. Instead of weakening w directly by 1, we can instead weaken the non-falsified385

literal z by 1 and then saturate Crsn so that w gets the desired coefficient 4.386

x+ 2y + 3z + 5w ≥ 5
x+ 2y + 2z + 5w ≥ 4 Wkn. z by 1

x+ 2y + 2z + 4w ≥ 4 Sat. (17)387

Clearly, since the coefficient of z is lower, the reduced reason in Equation (17) is stronger388

than the one obtained by MWD in Equation (16).389

Note that constraints obtained by MWI imply those obtained by MWD, as the only390

difference in both routines is that some coefficients are lowered for MWI, while the degree in391

the reduced reason remains exactly the same.392
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4.3 Combining MWD, MWI, and division-based reduction393

We present the novel MW variants in Algorithm 3. On line 3 we check Equation (14) to see394

if Requirement 3 will hold after MWD. If it does, we multiply the constraint and calculate395

the amount we directly weaken ℓr by on line 17. Otherwise, we use a fallback reduction,396

in our case this is division-based reduction from Algorithm 2. Note that this allows us397

to combine the division-based reduction variants, AW and WS, with the saturation-based398

variants, MWD and MWI. Then from line 9 to 16, if the reason literal is saturated, we399

apply indirect weakening and saturation. We perform the final step of direct weakening and400

saturate again. In this fashion, we use MWI in combination with MWD since there is no401

guarantee that only MWI will always sufficiently reduce the reason coefficient.402

Algorithm 3 reduceSaturation

Input: Reason Crsn, conflict Cco, reason literal ℓr, partial assignment ρ
Output: Tuple of reduced Crsn and (potentially multiplied) Cco

1 crsn ← coeff (Crsn, ℓr)
2 cco ← coeff (Cco, ℓ̄r)
3 if

⌈
cco

crsn

⌉
· slack(Crsn, ρ) + µ · slack(Cco, ρ) < 0 then

4 Crsn ←
⌈

cco

crsn

⌉
· Crsn

5 Cco ← µ · Cco

6 α←
⌈

cco

crsn

⌉
· crsn − µ · cco

7 else
8 return reduceDivision(Crsn, Cco, ℓr, ρ)
9 if crsn ≥ δC rsn then

10 for ℓi ∈ Crsn with coefficient ci ∧ ℓi /∈ ρ do
11 if ci > α then
12 Crsn ← weaken(Crsn, ℓi, α)
13 α← 0
14 else
15 Crsn ← weaken(Crsn, ℓi, ci)
16 α← α− ci

17 Crsn ← saturate(Crsn)
18 Crsn ← weaken(Crsn, ℓr, α)
19 return (saturate(Crsn), Cco)

5 Experimental Evaluation403

In this section, we evaluate the impact of the proposed techniques on solver performance.404

We implemented our techniques into Exact 2.1.0 [11]3, which is a fork of RoundingSat [12].405

We use three benchmark sets:406

KNAP crafted knapsack (783 instances) [22, 9]407

DEC-LIN the decision linear track of the PB’24 competition (398 instances)408

3 The earlier version of Exact submitted to the PB’24 competition already incorporated these techniques
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OPT-LIN the optimisation linear track of the PB’24 competition (489 instances)409

For KNAP the solver is given a memory limit 8GB of RAM and a timeout of 600 seconds.410

For DEC-LIN and OPT-LIN the solver is given a memory limit of 31GB of RAM and a411

timeout of 3600 seconds as in the PB’24 competition. The KNAP benchmark set is added412

because each instance consists of a single constraint, which puts a heavy emphasis on learning413

strong constraints. Our experiments were run on a cluster with 32 INTEL(R) XEON(R)414

SILVER 4514Y (2GHz) CPUs with 256GB of shared memory. We run each configuration of415

the solver with 5 seeds. Our figures are plotted with performance on the x-axis and solve416

time on the y-axis. Optimisation instances are considered solved if an optimal solution is417

found and it is proven that no better exists. We use the results from the five seeds to plot418

95% confidence bands to visualize potential variance in solve-times, with a solid line for the419

median. The implementation and run logs are included as supplemental material.420

5.1 Individual techniques421

Our first experiment compares each individual technique (i.e. the WS, AW, MWD, and422

MWD+MWI reduction methods) to Exact as a baseline. For the division-based techniques we423

see that on KNAP in Figure 1a, WS solves more instances and AW solves some instances faster.424

We also see positive results when it comes to the saturation-based techniques in Figure 1b.425

MWD and MWD+MWI both perform similarly, while outperforming the baseline. On426

DEC-LIN we see similar trends for the division-based techniques in Figure 2a. WS still427

solves more instances than the baseline and AW mostly helps solving some instances faster.428

For the saturation-based techniques we do see in Figure 2b a different trend compared to429

KNAP. While MWD still helps improve the performance of the solver, MWD+MWI shows a430

negative performance. This unexpected result is interesting, since we know MWD+MWI431

dominates MWD from a theoretical perspective. On OPT-LIN we do not see much of a432

difference either way for the division-based techniques in Figure 3a, but the performance433

marginally worsens for the saturation-based techniques in Figure 3b.434

We believe the smaller impact of AW is due to how each technique changes the constraint.435

WS only lowers one coefficient while keeping everything else the same, while AW increases436

the degree as well as a coefficient. The increase in the degree could however lead to fewer437

saturation opportunities after addition with the conflict constraint, reducing the impact. On438

the other hand, lowering a coefficient via WS may lead to fewer variable cancellations and439

in turn less saturation after addition, though the odds for cancellation on non-propagated440

literals may be relatively smaller. In the end, both techniques show only moderate impact441

on the selected benchmarks.442

(a) KNAP (b) KNAP

Figure 1 Comparing individual division- and saturation-based techniques on KNAP.
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(a) DEC-LIN (b) DEC-LIN

Figure 2 Comparing individual division- and saturation-based techniques on DEC-LIN.

(a) OPT-LIN (b) OPT-LIN

Figure 3 Comparing individual division- and saturation-based techniques on OPT-LIN.

5.2 Combined techniques443

In our second experiment we evaluate how combining the different techniques as shown444

in Section 4.3 impacts the empirical runtime of PB solvers. Additionally, we test an445

implementation of the combined division-based techniques, WS+AW, on another solver,446

namely the PB’24 competition version of RoundingSat, to see how it behaves in different447

solvers. Implementing the saturation-based techniques in RoundingSat would have required448

more extensive changes due to overflows after multiplication.449

The results are summarised in Table 1. On KNAP, combining all the techniques has a450

compounding effect for both solvers. On DEC-LIN, the results are less clear. Exact+WS+AW451

does perform very well, which might initially seem surprising since according to Proposition 11452

applying AW means less WS is possible. RoundingSat+WS+AW , on the other hand has453

minor impact on RoundingSat for DEC-LIN. Still, it seems both techniques can be combined454

effectively. The same cannot be said when mixing the division- and saturation-based455

techniques. We hypothesize that since WS+AW improves division-based reduction, a better456

heuristic than Equation (14) for the saturation-based techniques is necessary. It may be457

that WS+AW is most effective in many cases where MWD is actually possible, thus the458

improvements from WS+AW carry over to WS+AW+MWD. On OPT-LIN, the choice459

of configuration of the techniques still does not seem to have much impact, with similar460

performance to the configurations using an individual technique.461
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Solved KNAP (783) DEC-LIN (398) OPT-LIN (489)

Exact 664 282 250
Exact+WS 674 284 249
Exact+AW 666 282 248
Exact+WS+AW 683 287 247
Exact+MWD 687 285 248
Exact+MWD+MWI 685 275 248
Exact+WS+AW+MWD 695 284 248
Exact+WS+AW+MWD+MWI 698 280 249
RoundingSat 691 281 253
RoundingSat+WS+AW 709 282 251

Table 1 Median number of solved instances for different solver configurations across benchmarks.

6 Conclusion and Future Work462

We presented novel techniques to generate stronger reduced constraints in both division-463

based [12] and saturation-based [18] reduction methods. As in established work [20], we464

can indeed prove dominance relationships between the various reduction methods, which465

guarantee that reduced constraints obtained from one are at least as strong as those from466

another. The experiments show that stronger reduced constraints can improve the solver467

performance for different solvers and benchmarks, but not uniformly across all problems.468

While there are improvements on crafted knapsack benchmarks, and the competition decision469

benchmark for Exact, we observe little difference on competition optimisation benchmarks.470

Perhaps more surprisingly, in competition decision benchmarks we see a case of worsening471

performance for MWD+MWI compared to MWD, despite their dominance relationship.472

Hence our theoretical results provide a better understanding of reduction methods and473

the freedom there is in reducing constraints before addition. Empirically there is a lesser474

understood relationship between the strength of the reduced reason constraint, the strength475

of the learned constraint after all iterations of constraint addition in the conflict analysis, and476

the effect of the learned constraints on solver performance. However, these relationships are477

complex, because they involve the reduction and resolution of multiple reason constraints with478

the conflict constraint. With the insights of the paper we also see avenues to strengthen the479

reduced constraints further. For example, in division-based reduction, relaxing Requirement 2480

to Requirement 3 (as in saturation-based reduction) could lead to a smaller divisor or an481

increase in the amount of superfluous and anti-superfluous literals.482

We also saw how some combinations of reduction techniques can be effective, but they483

use heuristics, e.g. to choose between division- and saturation-based reduction for specific484

constraints. These heuristics are much less studied and can have a big impact on empirical485

performance which deserves further study.486
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