
Mutational Fuzz-testing for Constraint Modeling1

Systems2

Anonymous author3

Anonymous affiliation4

Abstract5

Constraint programming (CP) modeling languages, like MiniZinc and CPMpy, play a crucial role in6

making CP technology accessible to non-experts. Both solver-independent modeling languages and7

solvers themselves are complex pieces of software that can contain bugs, which undermines their8

usefulness. Mutational fuzz-testing is a way to test complex systems by stochastically mutating9

input and verifying preserved properties of the mutated output. We investigate different mutations10

and verification methods that can be used in the context of constraint programming. This includes11

methods proposed in the context of SMT-solving, as well as new methods related to global constraints,12

optimisation and solution counting/preservation. Our results show that such a fuzz testing approach13

improves the overall code coverage of a modeling system compared to only unit testing, and is able14

to find bugs in the whole toolchain, from the modeling language transformations themselves to the15

underlying solvers.16

2012 ACM Subject Classification Replace ccsdesc macro with valid one17

Keywords and phrases Dummy keyword18

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2319

Acknowledgements Anonymous acknowledgements20

1 Introduction21

Constraint solving is a declarative AI reasoning technique that is used in a variety of high-22

stakes applications ranging from scheduling production lines [17] to automated verification23

of computer programs [18] and aerospace applications [31]. All of these applications require24

constraint solvers to provide correct and reliable solutions to the constraint specifications.25

To leverage the power of modern constraint solvers, it is common for users to write down26

the problem specification in a high level, declarative constraint modeling language such as27

MiniZinc [23], XCSP [30], Conjure [2] or CPMpy [15]. These modeling languages play a28

fundamental role in enabling the wider adoption of CP technology across various domains as29

they provide high-level, expressive, and intuitive methods for users to define complex problem30

constraints. They offer an abstraction from the details of encoding high-level constraints31

into the specific constraints supported by a solver, allowing users to focus on the problem at32

hand rather than the specifics of the solvers. Modeling systems then rewrite the high-level33

user-constraints into solver-specific expression such as clauses, linear constraints or unnested34

global constraints. Therefore, the code base of modeling systems typically contains multiple35

reformulation and encoding algorithms. They are also made more complex by optimizations36

used to reduce the number of generated low-level constraints such as Common Subexpression37

Elimination (CSE) [24, 25, 27]. In some cases, these transformations are mixed-and-matched38

in different ways for different solvers.39

Like all complex software, modeling systems and constraint solvers can contain bugs. In40

the case of modeling systems, bugs can cause a range of undesired behavior: from experiencing41

crashes of the system itself to returning an invalid or non-optimal solution to the constraints42

stated by the user. Especially the latter can have a major impact on the user and the43

© Anonymous author(s);
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Mutational Fuzz-testing for Constraint Modeling Systems

application at hand. Moreover, it can also decrease the trust of users towards the underlying44

solving techniques.45

To mitigate the number of bugs in computer programs, it is good practice to use some46

kind of automated testing during software development. Unit testing [12] is such a technique47

to test isolated parts of the code. While unit testing is very useful to verify the intended48

behavior of a program, it is time-consuming for developers to write as it necessitates testing49

for both expected and unexpected inputs. Therefore, tricky edge cases may be overlooked50

when designing the test suite. In constraint solving, this is especially the case for non-trivial51

combinations of constraints that share variables.52

Fuzz testing is a family of techniques that automatically test computer programs on53

randomly constructed inputs. These techniques can either be generation-based or mutation-54

based: the former generates input from scratch, while the latter uses existing inputs and applies55

mutations to them in order to construct a valid new input. Fuzz-testing has proved to be56

extremely successful in finding bugs in a variety of computer programs: from testing Android57

apps [39], to crashes of Unix command-line utilities [22], and SMT solvers[20, 38]. Although58

fuzz testing has been used to test several solver-specific algorithms such as propagation59

routines [20, 38, 3, 9, 26], it has not yet been applied to solver-independent constraint60

modeling languages, despite their rapid development in recent years.61

In this paper, we draw insipiration systems such as STORM [20] and YinYang [38] tailored62

to test SMT solvers, and propose HURRICANE, a method to use mutational fuzz testing63

for generic consraint modeling systems. New opportunities for fuzz testing arise, because64

of the rich constraint specification that CP modeling languages allow. These include the65

use of global constraints and their decompositions [34], the use of n-ary aggregate functions,66

the possibility of arbitrarily nested expressions (even global constraints) that may require67

flattening, the use of objective functions, and the changing transformation flows that are68

used for different available backend solvers.69

Our contributions are:70

1. We propose a generic, mutation-based, automated testing framework, HURRICANE, for71

verifying the correctness of solver-independent CP modeling languages and their solvers;72

2. We investigate the use of 3 families of mutations; as well as 5 methods to verify the73

mutated models do not contain bugs; and74

3. We evaluate HURRICANE by testing it on the CPMpy constraint modeling system [15]75

and show that its effectiveness at finding bugs in the system itself as well as its underlying76

solvers.77

2 Related work78

Automated testing of computer programs finds its roots in unit testing [12]. A unit test79

consists of a small use case of a part of the software as envisioned by the developers. The80

technique was made popular by the JUnit testing framework in Java [32]. In recent years,81

researchers have studied ways to automatically synthesize unit tests in order to improve code82

coverage of the test suite [19]. Code coverage quantifies the number of lines of code in a83

program that is executed by a (set of) tests. While this is not a foolproof metric [36], it is a84

reasonable proxy to evaluate how thoroughly a system is tested.85

Fuzz testing has been used in combinatorial solving before. An early form of testing86

SAT-solvers uses generation-based techniques [10], and more recently, several solvers who87

entered the 2022 edition of the Max-SAT competition were subjected to fuzz testing [26]. In88

the field of CP, generation-based fuzz testing has already been adopted as an automatic testing89

Anonymous author(s) 23:3

technique for solvers. For example, the propagation algorithms present in the MINION90

solver have been automatically fuzz-tested throughout its development [3]. The input used91

for testing such propagation routines is a randomly generated set of constraints within the92

relatively simple grammar supported by the solver. The output of the solver is verified using93

simpler, but equivalent algorithms.94

Compared to the API of a constraint solver, CP modeling languages allow for a much95

richer set of expressions to be written down by a user. This makes stochastic generation of96

inputs more complex, hence we turn our attention to mutational fuzz testing techniques that97

were applied to satisfiability checking SMT solvers [20, 38, 8]. These techniques can generate98

deeply nested expressions in the rich, nested language that SMT solvers natively accept as99

input. While also applicable to high-level constraint modeling languages, we propose new100

mutations and verification methods based on this richer input.101

Finally, a very different kind of technique to detect bugs in combinatorial solvers is102

through the use of proof logging. Proof logging requires a system to write down the result of103

its algorithms as relatively simple mathematical reasoning steps. Such proofs are then verified104

automatically by a third-party checker [13, 16, 14]. SAT solvers are required to output proof105

logs (mathematical search certificates) in order to enter the yearly SAT competition1. In106

recent years, proof logging has successfully found its way to other combinatotrial search107

algorithms such as those used in (Max-)SAT-, ASP-, SMT- and CP [35, 4, 5, 28, 7, 21].108

However, proof logging for now remains a low-level technique that is not directly applicable109

to algorithms that translate any high-level expressions into multiple equivalent low-level110

solver constraints. Hélène: TODO:
update the ref
if the list of
accepted paper
at CPAIOR is
out before sub-
mission

111

3 Preliminaries112

A Constraint Satisfaction Problem (CSP) is a triple (X ,D, C) [29] with113

X a set of decision variables;114

D a set of domains of values for each variable in X ;115

C a set of constraints, each over some subset of X .116

An assignment maps variables in X to a value in their domain. A constraint maps117

assignments to true or false. An assignment satisfies a constraint if the constraint maps118

it to true. We make no assumption on the structure of a constraint, that is, it can be a119

nested expression as we will see below. A solution to a CSP is an assignment over all X120

that satisfies all constraints in C. The set of solutions of a set of constraints, projected121

to a set of variables X is written as solsX (C). E.g., given the following set of constraints122

C = {p + q + z ≤ 2, p < q} and positive domains for p, q and z, we observe the following sets123

of solutions:124

sols(C) = {{p 7→ 0, p 7→ 1, z 7→ 0}, {p 7→ 0, p 7→ 1, z 7→ 1}, {p 7→ 0, p 7→ 2, z 7→ 0}}125

sols{p,q}(C) = {{p 7→ 0, p 7→ 1}, {p 7→ 0, p 7→ 2}}126
127

A CSP allowing no solutions is unsatisfiable. In CP it is common to use an objective128

function to quantify the quality of a solution. A Constraint Optimization Problem (COP)129

is a quadruple (X ,D, C, f) with f an function that maps to a numeric value. An optimal130

1 https://satcompetition.github.io/

CVIT 2016

https://satcompetition.github.io/

23:4 Mutational Fuzz-testing for Constraint Modeling Systems

solution is a solution to the COP such that no solution exists with a lower/higher objective131

value for minimization/maximization problems.132

Global constraints are one of the essential features of constraint programming and capture133

high-level relations between a (non-fixed) number of variables [34]. Well-known examples of134

global constraints are the AllDifferent [33] constraint or the Cumulative [1] constraint.135

More examples can be found in the global constraint catalog [6].136

Typically, constraints and objectives are represented by expressions in some formal syntax.137

E.g., the constraint ¬AllDifferent(x1, x2 + x3, Max(x4, 0)) maps those assignments to138

true where x1, x2 + x3, and the maximum of x4 and zero do not all take different values.139

Equivalently, constraints can be inductively defined as expression trees. Its leaves are variables140

or values. Its non-leaf nodes are formed by applying operators, global constraints, functions,141

and comparisons to other expressions. The expression tree representing the previously142

mentioned complex expression is shown in Figure 1a.143

¬

AllDifferent
x1 +

x2 x3

Max
x4 0

(a) Expression tree

¬b1

b1 ↔ AllDifferent(x1, n1, n2)
n1 = x1 + x2

n2 = max(x4, 0)

(b) Flattened version

Figure 1 Expression tree and flattened version of ¬AllDifferent(x1, x2 + x3, Max(x4, 0))

3.1 Solvers and modeling systems144

CSPs are solved by constraint solvers: highly optimized combinatorial search systems that145

accept a set of constraints and return (optimal) solutions or report that none exist. Constraint146

solvers do not accept arbitrary expression trees as constraints. Instead, they have a restricted147

input and rarely a solver would accept a complex expression like the one given in Figure 1a148

as an input constraint.149

Instead of having to manually transform a problem to the format of each solver, a model150

and solve approach is used, where a user specifies the constraints in an expressive, high-level151

modeling language. Then, an underlying compiler translates these constraints to simpler,152

low-level constraints that are passed to a solver. The translation involves multiple complex153

transformation steps, with flattening (unnesting of nested expressions) and global constraint154

decomposition (decomposition of unsupported global constraint) as notable examples [27].155

Because different solvers can accept different inputs, distinct transformation paths are156

necessary for different solvers. When using MIP solvers the constraints have to be linearised157

into mixed integer linear inequalities, for SAT solvers only propositional clauses should be158

left, or for CP solvers non-nested constraints over variables, where globals constraints that159

are not supported are decomposed.160

▶ Example 1 (Flattening). In Figure 1b, we show the flattened version of the expression161

¬AllDifferent(x1, x2 + x3, Max(x4, 0)). The flat output is constructed by traversing the162

expression tree in Figure 1a and introducing auxiliary variable n1, n2 and b1 for every non163

leaf-node. n1 and n2 are numerical variables while b1 is Boolean.164

Anonymous author(s) 23:5

3.2 CPMpy165

As a concrete modeling system, we will use CPMpy [15], a constraint modeling library166

embedded in the Python programming language. It translates high-level expressions written167

by a user, to different constraint solvers using a sequence of generic transformations. Multiple168

solvers are supported, including CP, SAT, MIP, SMT and Pseudo-Boolean solvers.169

CPMpy’s input language allows arithmetic operations (+,−, /,× . . .), comparisons (=170

, ̸=, <, >,≤,≥), logical operations (¬,∧,∨,→,⊕), functions (Max, Count, Abs . . .) and171

global constraints (AllDifferent, Cumulative . . .). Expressions in CPMpy are either172

of Boolean or integer type. With B we denote the Boolean expressions, with N the integer173

ones. Any Boolean expression in CPMpy can also be used as an integer expression (with174

true treated as 1 and false as 0). In other words, B ⊆ N .175

CPMpy allows users to arbitrarily nest expressions. For example, a disjunction can be176

used as a constraint or as an argument to an operator, a function or even a global constraint.177

Similarly, global constraints can be arbitrarily nested and used as any Boolean expression.178

E.g., Max(10 · Circuit(x1, x2, x3), x1/x4) ̸= 7 is a valid CPMpy expression. Therefore,179

we avoid the use of the word “constraint” to represent a Boolean expression, as such a180

Boolean expression might be used as a subexpression instead. We use the concept of top-level181

expression to denote that the expression was given to the solver as a constraint.182

4 Mutational testing183

We now introduce HURRICANE, a framework for mutational fuzz testing of constraint184

modeling systems, inspired by the STORM [20] and YinYang [38] systems for testing SMT-185

solvers. A high-level overview is shown in Algorithm 1.

Algorithm 1 HURRICANE

Input: set of m CSP models {(Xj ,Dj , Cj)}, set of mutations M and n, a number of
mutations to apply to each instance

1 while true do
2 (X ,D, C)← pick an instance from the input set
3 for i = 1 . . . n do
4 M ← pick a mutation from M
5 C ← C ∪M(C)
6 if verify(C) does not succeed then
7 yield bug with constraints C

186

Our method takes as input a set of m constraint statisfaction or optimization problems187

that are known to be satisfiable. In each iteration of the algorithm, we randomly pick one of188

the models and apply a number of mutations to its constraints. A mutation is a function189

M that takes as input as set of constraints and outputs a set of new constraints M(C). We190

investigate different mutations in Section 5. These newly generated constraints are then191

added to the model. Notice this allows us to generate weaker constraints without altering192

the set of solutions of the model. After applying these mutations, we verify whether the193

resulting set of constraints satisfies certain properties, e.g., whether the mutated model is194

still satisfiable. Whenever this check fails, the algorithm has found a bug and this is logged195

to the user. In Section 5 we investigate different types of mutations to use and Section 6196

discusses the methods that can be used in order to verify the mutated models.197

CVIT 2016

23:6 Mutational Fuzz-testing for Constraint Modeling Systems

As our algorithm involves several random components, it is common to (re-)discover the198

same error or bug in multiple ways. In an attempt to minimize this to some extent, we199

exclude any mutation-model pairs which have already produced a bug, without showing this200

explictely in the pseudocode.201

Input models202

To construct a varied dataset of feasible input models, we suggest to extract the constraint203

models used for the unit tests of the given modeling language. From a practical point of204

view, this is useful as unit test models are readily available and kept up-to-date. Many of205

models used in unit tests also tend to be small and hence fast to solve. Moreover, unit206

tests are highly diverse and it is reasonable to assume these models will contain all language207

constructs (such as global constraints and functions). Finally, additional test cases are often208

added to the unit tests as part of a bug-fix, hence a fix is tested more rigorously by applying209

fuzz-testing on the newly added test-model too.210

Throughout this paper we use the following input model as a running example.211

▶ Example 2 (Running example). Consider the following constraint satisfaction problem with212

integer variables x, y, z, p and q with domains [1..5] and a Boolean variable b.

AllDifferent(x, y, z), y + Min(p, q) > 3, 2 · (x + p) ≤ 7
213

214

5 Mutations215

We consider three families of mutations. The first of which are based on the reformulation216

methods built into constraint modeling systems such as flattening of linearization of con-217

straints. Second, we focus on top-level mutations which combine existing top-level expressions218

to create a new expression, and lastly, we consider sub-expression-level mutations which can219

replace nodes at arbitrary depth in the expression tree. All of these mutations generate220

constraints which do do not disallow any of the solutions of original constraints. Because221

we also leave the original constraints in the mutated model (see Algorithm 1), this means222

the set of solutions projected to the original variables should remain unchanged after any223

mutation. This property of our mutations is exploited in Section 6 in order to verify the224

output of the modeling system after mutating the constraint model.225

5.1 Reformulation mutations226

Constraint modeling systems implement reformulation methods in order to rewrite constraints227

into semantically equivalent ones. For example, when a modeling system interfaces a MIP228

solver, it implements some procedure to linearize constraints. That is, to rewrite any229

constraint into weighted sums and linear comparisons. Similary, CP modeling systems230

decompose unsupported global constraints or flatten complex expression trees.231

CPMpy provides this functionality as standalone transformation functions which take232

as input a set of constraints and output a set of (simpler) constraints that imply the input233

constraints.2 As these transformations are supposed to create sets of constraints that leave234

2 https://github.com/CPMpy/cpmpy/tree/master/cpmpy/transformations

https://github.com/CPMpy/cpmpy/tree/master/cpmpy/transformations

Anonymous author(s) 23:7

the solutions of the CSP unaltered, we can directly use them as mutations in the mutational235

testing framework. By using these transformation functions, we are able to test these core236

components of the modeling language on a wide range of expressions, even if the backend237

solver does not require that specific transformation. The full list of the transformation238

functions used and their description can be found in Appendix B.239

5.2 Top-level mutations240

The first set of mutations we use in our framework is based on logical operations with the241

main idea being the following: given two Boolean expressions from the top-level of the242

constraint model, combine them to create an implied expression. As both input expressions243

will be enforced to be satisfied by the constraint solver, the newly generated expressions do244

not alter the set of solutions when added to the model and can be considered redundant.245

We compile a set of top-level mutations as summarized in Section 5.2. They are inspired246

by the mutations described in [20] and derived from the truth table of the logical operation247

relation whose name is shown as subscript in the function descriptions below. We repeat248

that these operations are only done on top-level constraints, so they are all implied under249

the condition of a∧ b being enforced. Hence, all these constraints can be added to the model250

without changing the set of solutions.251

Mneg(a) = {a,¬(¬a)} (1a)252

Mconj(a, b) = {(a ∧ b),¬(a ∧ ¬b),¬(¬a ∧ b),¬(¬a ∧ ¬b)} (1b)253

Mdisj(a, b) = {(a ∨ b), (a ∨ ¬b), (¬a ∨ b),¬(¬a ∨ ¬b)} (1c)254

Mimpl(a, b) = {(a→ b), (¬a→ b), (b→ a), (¬b→ a),255

¬(a→ ¬b), (¬a→ ¬b),¬(b→ ¬a), (¬b→ ¬a)} (1d)256

Mxor(a, b) = {(a⊕ ¬b), (¬a⊕ b),¬(a⊕ b),¬(¬a⊕ ¬b)} (1e)257
258

Note that we add all these constraints as is, e.g. we do not simplify ¬(a∧¬b) to (¬a∨ b) but259

leave this expression for future mutations to manipulate further, and for the transformations260

and solvers to handle correctly.261

Our proposed mutation will randomly pick one of the sets of implied constraints and add262

all those.263

▶ Example 3. Given the constraint model shown in Example 2. Imagine HURRICANE264

selects the constraints a := AllDifferent(x, y, z) and b := Min(p, q) > 3 and the top-level265

mutation derived from the disjunction operator. Then the following set of constraints is266

generated and added to the model, resulting in a CSP with seven constraints.267

{(AllDiff(x, y, z)) ∨ (2 · (x + p) ≤ 7), ¬
(
¬AllDiff(x, y, z) ∨ ¬(2 · (x + p) ≤ 7)

)
,268

(¬AllDiff(x, y, z)) ∨ (2 · (x + p) ≤ 7), (AllDiff(x, y, z)) ∨ ¬(2 · (x + p) ≤ 7)}269
270

5.3 Subexpression mutations271

The mutations described in the previous section operate on top-level Boolean expressions.272

However, we can also modify the expression trees themselves by replacing any of the nodes273

with equivalent ones. Such modified expression trees may trigger different code paths for274

example during flattening of the expression tree before being posted to the solver.275

CVIT 2016

23:8 Mutational Fuzz-testing for Constraint Modeling Systems

In order to find a set of subexpressions to use for the mutation, we recursively traverse276

the expression tree of each of the constraints. Whenever we find a (sub)expression of the277

required type - e.g., an arithmetic expression - we add the constraint and corresponding278

subexpression to the set of candidates to sample from. Once this set of candidate expressions279

is found, we sample the required amount of expressions to use in the mutation.280

In the remainder of this section we discuss two types of subexpression mutations.281

Semantic fusion282

As a way to combine arithmetic sub-expressions, semantic fusion was introduced in the283

context of testing SMT-solvers [38]. The key idea is to fuse two numeric expressions and284

create an auxiliary variable for it, and then replace the original expressions by an equivalent285

one involving that variable.286

In general, semantic fusion requires a fusion function f(a, b) which takes as input two287

arithmetic expressions; an auxiliary variable v and two inversion functions ra(v, b) and288

rb(v, a). We can then mutate constraints in which a and b occur, by replacing the occurrences289

of a and b by their now equivalent ra(v, b) and rb(v, a) expressions.290

▶ Example 4. We sample two arithmetic subexpressions from the CSP given in Example 2.291

For example, we take a := Min(p, q) and b := 2 · (x + p), which are sampled from the second292

and third constraint in the CSP. Using the fusion function f(a, b) = a + b, we now define a293

new auxiliary variable v to link the new fused expression as v = Min(p, q) + 2 · (x + p). We294

can now define a relation from a to b and vice versa involving the auxiliary variable. E.g., we295

replace Min(p, q) with v − 2 · (x + p) and the occurrences of 2 · (x + p) with v −Min(p, q).296

This yields the two constraints b ↔ (v − 2 · (x + p)) > 3 and v −Min(p, q) ≤ 7 which are297

then added to the model.298

Multiple operations can be used for the fusion function, even Boolean operators (in which299

case boolean sub-expressions should be selected) though an appropriate inverse function must300

exists. For example f(x, y) = x∨ y and f(x, y) = x∧ y do not allow constructing appropriate301

inversion functions. In practice, we make use of the fusion functions shown in Table 1

Origin Fusion Function Inverse Functions

Sum f(a, b) = a + b
ra(v, b) = v − b

rb(v, a) = v − a

Weigthed sum f(a, b) = c1 · a + c2 · b + c3
ra(v, b) = (v − c2 · b− c3)/c1
rb(v, a) = (v − c1 · a− c3)/c2

Substract f(a, b) = a− b
ra(v, b) = v + b

rb(v, a) = a− v

Table 1 Functions which can be used in semantic fusion of arithmetic expressions

302

Equivalent comparisons303

The second type of subexpression mutators generates equivalent comparisons. This is done304

by selecting a random comparison in the expression tree of the constraint model and applying305

the same operation to both its sides. These operations can either add a constant, subtract306

a constant or apply multiplication by a constant. The constant itself is picked at random.307

Although this mutation is based on a straightforward idea, we did not find any mention of it308

in literature.309

Anonymous author(s) 23:9

▶ Example 5. Imagine the algorithm picks the second constraint of the running Example 2:310

y + Min(p, q) > 3 and the multiply by a constant mutator. If the constant used is “5”, then311

applying the mutation results in the expression 5 · (y + Min(p, q)) > 5 · 3.312

The same could in principle be done with a fresh variable or an existing numeric subex-313

pression from another constraint, but in this case we just use an integer constant.314

6 Verification methods315

To detect whether a bug has occurred, we need to verify that certain properties hold for the316

mutated constraints. In fuzz-testing for SMT research [20, 38, 8], the authors check if after317

mutations, the model still admits a solution. However, more elaborate checks are possible as318

well. In particular, the mutations presented in Section 5 should not alter the set of solutions319

projected to the original variables. The verification methods as presented in the following320

sections are all methods in order to check whether indeed this set of solutions is preserved.321

Different trade-offs between efficiency, code coverage, and thoroughness of the verification322

present themselves. We compare and evaluate them experimentally in Section 9.323

6.1 All-solutions324

A first method to check the set of solutions is unchanged is to enumerate the solutions of
the original model and those of the mutated model and checking for equivalence of solution
sets. Some of the mutations presented in Section 5 can introduce auxiliary variables. E.g.,
semantic fusion introduces a fusion variable but also the built-in reformulations such as
flattening can introduce new variables into the model. Therefore, in order to compare both
sets of solutions, we need to project them to the original set of decision variables X . I.e.,
this verification method checks whether the following equivalence holds:

solsX (C) ≡ solsX (C ∪M(C))

Note that enumeration of all solutions is a costly operation - #P-complete in general [11]325

- but solvers oftentimes have built-in methods for doing so. CPMpy implements enumeration326

of all solutions using the solveAll function. This in turn calls the built-in enumeration327

method of the solver if available, otherwise it implements the enumeration using repeated328

solve calls and blocking clauses. Clearly, using this verification method does not only allow329

for a theoretically strong verification of the mutations, but can also trigger different code330

paths in either the modeling system or the solver itself.331

6.2 Solution count332

Instead of checking whether projected sets of solutions are equivalent, we also want to check333

whether new solutions with respect the auxiliary variables are introduced by the mutations.334

E.g., if a mutation introduces an unconstrained Boolean auxiliary variable, the total number335

of solutions will be doubled. While this behaviour is unwanted for any of the mutations336

presented in this paper, it is undetected by the All-solutions verification method as the337

sets of solutions are projected to the original variables.338

Therefore, we propose to also check whether the total number of solutions of the mutated
model is unchanged to the original number of solutions. I.e.. we check whether whether

|sols(C)| ≡ |sols(C ∪M(C))|

CVIT 2016

23:10 Mutational Fuzz-testing for Constraint Modeling Systems

Similar to enumeration of all solutions, counting solutions is also a costly operation, but339

may trigger new code paths in modeling systems or solvers. Note that solution counting and340

checking equivalence of projected solutions sets are complementary to one another. While341

solution counting discovers bugs related to auxiliary variables, All-solutions can discover342

bugs related to assigned values of the decision variables.343

6.3 1-solution344

Instead of checking whether all solutions remain for the mutated constraints, we can check345

whether a predefined solution is preserved by the mutations. In practice, we implement this by346

adding the assignment of a pre-computed solution to the set of mutated constraints and check347

if the resulting constraints are satisfiable. E.g., for the CSP from Example 2, we can test if after348

mutation of the constraints, the assignment {b 7→ false, x 7→ 2, y 7→ 3, z 7→ 1, p 7→ 2, q 7→ 1}349

is still a solution of the CSP. Conceptually, we check for a given solution θ whether350

θ ∈ sols(C ∪M(C))

Notice that verifying if a solution satisfies a set of constraints is polynomial in time as351

the solver does not require any search when all variables are fixed! Naturally, finding the352

pre-computed solution for the original CSP requires invoking a solver nevertheless.353

We expect this method to detect similar changes to the set of solutions such as the354

All-solutions, while avoiding the enumeration of all solutions.355

6.4 Satisfiability356

Instead of checking whether a predefined assignment is a solution of the mutated model, we357

can also check whether the mutated model admits a solution at all. This verification method358

is similar to the work on fuzz-testing SMT-solvers [20, 38, 8]. Naturally, this check does not359

detect subtle changes in the set of solutions of the mutated model, but rather checks if the360

sets of solutions is non-empty.361

6.5 Optimization362

In constraint programming, it is common to use an objective function in order to quantify the363

quality of a solution. E.g., when scheduling a set of tasks on a machine, it is common to find364

a schedule which runs in the least amount of time or requires the smallest amount of energy.365

When such an objective function is set in a constraint model, we can check whether solving366

the mutated model to optimality yields the same objective value. That is, we check whether367

at least one of the optimal solutions is still an optimal solution of the mutated model.368

While this check is conceptually stronger compared to checking the satisfiability check369

presented in Section 6.4, it has two disadvantages. Firstly, it requires the existence of370

an objective function in the model and secondly, finding an optimal solution to a CSP is371

conceptually harder, and hence will take more time, compared to finding any satisfying372

solution to the constraints.373

7 Dealing with bugs374

Computer programs can exhibit several types of bugs. Similar to the authors of [20], we375

define three classes for bugs to occur in constraint modeling languages. Section 7.1 discusses376

errors in the logic of modeling systems and solvers, while Section 7.2 and Section 7.3 focus377

Anonymous author(s) 23:11

on bugs which impact the runtime environment of modeling systems. Lastly, in Section 7.4,378

we discuss a practical method to find minimal examples of when a bug occurs.379

7.1 Soundness bugs380

The first type of bug are those where the modeling system are detected when the modeling381

system returns a wrong answer to a verification check from Section 6. Such bugs are critical382

as the user is given a wrong answer to the constraints, while the modeling system seems to383

run as normal. E.g., the solver returns a non-optimal solution to an optimization problem or384

declares a set of constraints to be unsatisfiable when in fact they admit a solution.385

Soundness bugs can be caused by either the solver itself, or by the modeling system.386

In the case where the root-cause of the bug lies in the solver, an example can be when a387

propagation function for a (global) constraint removes values from a domain which allowed a388

solution. When the bugs is caused by the modeling system an example is flawed interface to389

the solver or an inproper reformulation of the constraints.390

Overall, soundness bugs are critical but difficult to detect in day-to-day use of a modeling391

language as their use rarely includes verifying the result in a later stage.392

7.2 Crashes393

During the execution of HURRICANE, it is possible the runtime of the modeling system394

crashes. We identify two main points of possible failure: applying a mutation and verifying395

the mutated model.396

We noticed crashes or errors occurring during the mutation of set of constraints are often397

triggered when a reformulation mutation is chosen. For example, during linearization of a set398

of constraints, an assertion error was thrown because certain edge cases were not covered.399

When a crash occurs during verification of the set of mutated constraints, this can400

be caused by either the backend solver or the modeling system. For example, during the401

development of our tool, a crash in a solver was caused by an integer overflow error - causing402

the solver to return an error message. An example when CPMpy was identified to be the403

cause of a crash happened when one of the interfaces to a solver did not implement all404

primitive constraints properly.405

Most crashes are easy to detect in the day-to-day use of modeling systems as a user406

always receives an error message. Still, the severity of a crash can vary widely as it mostly407

depends on how the system is used. E.g., when the modeling system crashes when used in408

an integrated system of a manufacturing plant, the crash has likely far greater implications409

compared when it is used in an interactive session.410

7.3 Performance issues411

The last type of bugs we identified are related to the performance and efficiency of the library.412

For example, when we verify whether the mutated model satisfies at least one solution,413

the time it takes for the modeling system to receive an answer from the solver may be414

significantly higher compared to the original model. This can again have several reasons415

caused by either the modeling system or the solver. For example, the mutated model may416

contain global constraints which get decomposed in a particularly inefficient way when nested417

by HURRICANE. Sometimes, either the solver or modeling system may even get stuck in an418

infinite loop! In practice we overcome this by setting a hard time-limit on the call to the419

verification method. Naturally, this may trigger false-positives as the mutated model may420

CVIT 2016

23:12 Mutational Fuzz-testing for Constraint Modeling Systems

simply be harder to solve due to the surplus in variables and constraints. Still, we log these421

bugs as it may uncover interesting inefficienties in the code.422

7.4 Minimizing buggy models423

The mutations defined in this paper can result in very large and deeply nested constraint424

models. However, often only a (small) subset of the constraints are the root cause of the425

bug. In our work, we utilize a simple deletion-based method that iteratively removes a single426

constraint from the model as long as the remaining model exhibits the bug. This method427

is similar to delta-debugging and is often used in combination with fuzz-testing [40]. It428

should be noted that a crash of the system often gives some sort of message pointing to429

the expressions that caused the crash. Therefore, we deem delta debugging to be especially430

useful when dealing with a soundness bug.431

Another way to simplify the debugging process is by automatically detecting bugs that432

are already identified. HURRICANE will keep logging a bug until it is fixed, so the same bug433

will be logged many times over. A first way to find out which of the bugged models are cause434

by Bug X, is to fix Bug X and then simply check which buggy models do no longer exhibit a435

bug. It’s ofcourse not always possible to quickly fix a bug, even after it is identified. We436

then resort to matching the error messages and location of the error in the code, as well as437

the input model or transformation that lead to the bug. For soundness bugs we can compare438

the results of multiple solvers to see if they match. This is enough information to confidently439

categorise most bugs in a semi-automated process.440

8 Summary of found bugs441

We coded up HURRICANE in Python 3.11 for CPMpy using the mutations and verification442

methods described previously. During development, which covers a period of about 1.5443

years, we discovered 52 unique bugs in total. This includes 19 bugs found in CPMpy444

during a master thesis that preceded this work3. Out of all bugs discovered, 13 bugs where445

soundness bugs, 5 of which had their origin in backend solvers. In particular, we found 2446

soundness bugs in the OR-tools solver and three in the MiniZinc system. The vast majority447

(29) bugs were crashes of the CPMpy runtime environment. One of these crashes was traced448

back to a backend solver crashing. Lastly, we found three performance issues, one of which449

was again found in a backend solver.450

Out of these 52 bugs, 14 remained at the time of the experiments described in the next451

section. 6 bugs in backend solvers and 8 in CPMpy. We shortly discuss these bugs in452

Appendix A. Full experimental data is also shown there.453

9 Experimental evaluation454

In this section, we investigate each of the components of our fuzz-testing framework. In455

particular, we aim to answer the following experimental questions:456

EQ1. What are the tradeoffs between increasing the number of mutations on each model457

and increasing the number of models being tested?458

EQ2. How effective are the different verification methods for finding bugs in constraint459

modeling systems?460

3 Reference temporarily omitted for anonymity

Anonymous author(s) 23:13

EQ3. To what extend improves fuzz-testing the overall coverage of tested code compared to461

CPMpy’s builtin suite of unit tests?462

We configure HURRICANE to use different numbers of mutations and different types of463

verification methods. We test each of the five verification methods described in Sections 6.4 -464

6.5 separately. For each of the verification methods, we employ four numbers of mutations465

applied to the input model before verification: n = {1, 2, 5, 10}. As backend solvers, we test466

the OR-Tools CP-SAT solver v.9.9 and MiniZinc v.2.8.3 with Gecode version 6.3.0. This467

combination of settings results in a total of 40 configurations, each of which was ran for 10468

hours on an Ubuntu 20.04.6 LTS machine with an Intel Core i7-2600 CPU@3.40Ghz and469

16GB of RAM. During these experiments, we keep track of which lines in the code-base are470

executed using the coverage utility in Python.471

We used 1240 constraint models as input, 7 of which are optimization problems. As472

discussed in Section 4, the models were extracted from the unit tests of CPMpy. All code473

and experimental data will be made available upon acceptance of this paper. In the following474

sections, we aggregate the results of the above evaluation in order to answer the experimental475

questions.476

9.1 EQ1: effect of number of mutations477

In this first experiment, we investigate the influence of the number of mutations (n) used478

in Algorithm 1 before verifying the mutated models. The more mutations used, the more479

diverse the output can be, and the more likely it is for a bug to be found. This can clearly480

be seen from the #unique column in Table 2 where we notice a steady increase in number of481

unique bugs found, with respect to the number of applied mutations. Notice this number482

of unique bugs is not in direct correlation with the number of errors reported. E.g., when483

testing OR-Tools and using two mutations before verification, many errors with the same484

root-cause (bug) are found by HURRICANE.485

Mutations can increase the size of a model hyperlinearly: when applying a transformation486

such as flattening or decomposing global constraints, a single constraint can easily become a487

large set of constraints. Hence, it is likely the subsequent mutations will be slower as they488

have to run on bigger input, as does the verification check. From the #models column in489

Table 2, we can indeed conclude more mutations will result less models tested for the given490

time-frame of ten hours.491

The optimal value for n will of course depend on the time HURRICANE is ran for, since492

for smaller n we can find bugs more quickly, but for big n we expect to find those bugs493

eventually. We therefore propose that the best way of using HURRICANE would be to494

increase n over time, causing the easily detected bugs to get found quickly while making it495

possible to find the more obscure bugs later on.496

Table 2 Number of mutations for each iteration compared to the number of bugs found and
number of models handled. (Aggregated over the different verification methods)

OR-Tools MiniZinc Total
#mutations #models #errors #unique #models #errors #unique #unique

1 9166418 5747 1 218377 289 3 3
2 6672588 11002 3 216527 723 6 6
5 2270441 8975 5 128884 1495 8 11
10 344710 2783 7 57191 423 9 13

CVIT 2016

23:14 Mutational Fuzz-testing for Constraint Modeling Systems

9.2 EQ2: effect of verification methods497

The next dimension of our algorithm we investigate is the different types of verification498

methods. We aggregate the results for this experiments for all number of mutations. I.e., the499

results as reported in Table 3 result from testing the algorithm with all settings of n.500

First of all we notice a big difference in the amount of models that the different methods can501

verify. The results for the optimization verification method should be interpreted cautiously,502

because they run on a smaller subset of input models that have an objective function. These503

models happen to be small, explaining why the optimization verification solves more models504

than we would expect it to. More interesting is the difference in the number of models checked505

for the satisfiability and 1-solution verifications compared to counting and equivalence. This506

however does not translate to a large advantage in discovered bugs, indicating the usefulness507

of the computationally more expensive counting and equivalence verifications.508

The 1-Solution verification performs best, regarding the number of unique bugs. This can be509

understood because it is a stronger check than the satisfiability check, but seems even faster.510

This is due to the fact that we send the instantiated solution to the solver when verifying511

the mutated model, leading to faster propagation.512

Interestingly we observe that the solution counting, 1-solution and optimization methods513

all found at least 1 bug that was not detected by any of the other methods. This was not514

the case for All-solutions or satisfiability checking, and we could consider those redundant in515

the context of our experiments. Although verifying All-solutions is theoretically a stronger516

check than solution counting, and they can test models at a similar speed, both methods517

found bugs that the other did not. For example in an earlier experiment a bug was found in518

the solveAll routine of CPMpy, only detected using solution count. This highlights the519

advantage of using different verification methods to cover all aspects of the toolchain.520

Table 3 Number of verification steps and errors found for different verification methods in 40
hours. (Aggregated over the different values of n)

OR-Tools MiniZinc Total
verification #models #errors #unique #models #errors #unique #unique

All sol 13441 460 4 11167 312 7 8
Counting 14551 539 5 11623 325 6 8
One sol 4095185 25695 5 194495 1983 8 10

Sat 3679400 180 4 186119 116 5 8
Opt 10651580 1633 2 217575 194 3 4

9.3 EQ3: effect on code coverage521

As mentioned in Section 2, code coverage is a common proxy to measure the efficacy of522

a test suite. In this experiment, we compare the code coverage of running all unit test523

models (unit-models), running HURRICANE for 400 hours with these unit test models524

(200 hours for each backend solver) (HURRICANE), running all unit tests (not just the525

models that appear in them) (unit-tests), and the combined code coverage (combined) of526

HURRICANE and unit-tests.527

The results are presented in Table 4. The rows in this table are split on the different528

solvers, with each subrow representing a part of the code base. expressions contains the529

construction and evaluation code for all expressions (operators, functions, global constraints,530

etc.), transformations the internal transformation routines, and ortools.py and minizinc.py531

contain the solver-specific interfacing code532

Anonymous author(s) 23:15

The results show that HURRICANE improves code coverage over just solving the unit533

models, but not over running all unit tests. Still, HURRICANE does cover new parts of534

the code, as the combined coverage is higher than just unit tests on its own. Because535

HURRICANE uses the internal transformations as mutations, we see a high code coverage536

on transformations too, even when using a solver like MiniZinc that requires only few of the537

transformations in CPMpy.538

Table 4 Segmented code coverage for different components of CPMpy

Solver files unit-models HURRICANE unit-tests combined

OR-Tools
expressions 54.6% 64.6% 87.3% 88.6%

transformations 59.3% 83.6% 86.4% 88.2%
ortools.py 64.1% 81.5% 90.4% 91.5%

MiniZinc
expressions 51.1% 64.0% 87.3% 88.6%

transformations 22.1% 82.6% 86.4% 88.2%
minizinc.py 70.6% 84.3% 83.0% 89.2%

10 Discussion and future work539

We presented a method to automatically test constraint modeling languages given a set540

of input CSPs and COPs. We show that a sufficiently diverse set of input models can be541

obtained from the unit tests of the modeling language. Based on recent work in SMT-testing,542

we proposed a set of mutations to use over these models, in order to generate new and more543

complex inputs to the modeling language.544

As shown in Section 9, our method is able to find a significant number of bugs for the545

CPMpy framework and its solvers, ranging from crashes to soundness bugs and finding546

downstream bugs in MiniZinc and OR-Tools. Moreover, using our framework improves547

the code coverage compared to the unit testing implemented in the library. Our proposed548

fuzz testing techniques also neatly allow continuous integration with modeling language549

development: when new features and bug fixes are added to a modeling language, the fuzz550

testing framework can just continue with the latest version on some remote server, testing551

the codebase 24/7.552

While our methods are highly effective in finding bugs, one of the major difficulties553

remains how to avoid re-finding similar bugs, and producing minimal bug instances. We554

leave this topic for future investigation. Compared to testing SMT-solvers, CP offers several555

interesting dimensions on which we only briefly touched in this paper. These features include556

optimization, which can be tested more thoroughly in the future by also mutating objective557

functions. Another key feature of CP is the notation of global constraints. Based on [8], we558

would like to include mutations which can introduce new global constraints into the models559

as currently we rely on the global constraints already being present in the input.560

Recent work in SMT-solving showcases the power of using voting between multiple solvers561

to verify the answer any of the solvers produce [37]. Crucially, solver voting allows to use562

mutations where the result of the solver does not have to be known upfront, i.e., one does563

not have to know what properties the mutations have. Using multiple solvers perfectly suits564

the testing of constraints modeling languages, as their core function is to translate constraint565

specifications to multiple solvers and solving paradigms. We are optimistic that this work566

will remain useful in the future, by applying it to more solvers, adding more mutations, and567

encouraging more developers to make use of it.568

CVIT 2016

23:16 Mutational Fuzz-testing for Constraint Modeling Systems

References569

1 Abderrahmane Aggoun and Nicolas Beldiceanu. Extending CHIP in order to solve complex570

scheduling and placement problems. In Jean-Paul Delahaye, Philippe Devienne, Philippe571

Mathieu, and Pascal Yim, editors, JFPL’92, 1ères Journées Francophones de Programmation572

Logique, 25-27 Mai 1992, Lille, France, page 51, 1992.573

2 Özgür Akgün, Alan M. Frisch, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter574

Nightingale. Conjure: Automatic generation of constraint models from problem specifications.575

Artif. Intell., 310:103751, 2022. doi:10.1016/j.artint.2022.103751.576

3 Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Meta-577

morphic testing of constraint solvers. In John N. Hooker, editor, Principles and Practice of578

Constraint Programming - 24th International Conference, CP 2018, Lille, France, August579

27-31, 2018, Proceedings, volume 11008 of Lecture Notes in Computer Science, pages 727–736.580

Springer, 2018. doi:10.1007/978-3-319-98334-9_46.581

4 Mario Alviano, Carmine Dodaro, Johannes Klaus Fichte, Markus Hecher, Tobias Philipp, and582

Jakob Rath. Inconsistency proofs for ASP: the ASP - DRUPE format. Theory Pract. Log.583

Program., 19(5-6):891–907, 2019. doi:10.1017/S1471068419000255.584

5 Haniel Barbosa, Andrew Reynolds, Gereon Kremer, Hanna Lachnitt, Aina Niemetz, Andres585

Nötzli, Alex Ozdemir, Mathias Preiner, Arjun Viswanathan, Scott Viteri, Yoni Zohar, Cesare586

Tinelli, and Clark W. Barrett. Flexible proof production in an industrial-strength SMT solver.587

In Jasmin Blanchette, Laura Kovács, and Dirk Pattinson, editors, Automated Reasoning - 11th588

International Joint Conference, IJCAR 2022, Haifa, Israel, August 8-10, 2022, Proceedings,589

volume 13385 of Lecture Notes in Computer Science, pages 15–35. Springer, 2022. doi:590

10.1007/978-3-031-10769-6_3.591

6 Nicolas Beldiceanu, Mats Carlsson, and Jean-Xavier Rampon. Global constraint catalog,592

(revision a), 2012.593

7 Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified symmetry594

and dominance breaking for combinatorial optimisation. In Thirty-Sixth AAAI Conference595

on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications596

of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in597

Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pages 3698–3707.598

AAAI Press, 2022. URL: https://ojs.aaai.org/index.php/AAAI/article/view/20283.599

8 Mauro Bringolf. Fuzz-testing smt solvers with formula weakening and strengthening. Master’s600

thesis, ETH Zurich, 2021.601

9 Robert Brummayer and Armin Biere. Fuzzing and delta-debugging smt solvers. In Proceedings602

of the 7th International Workshop on Satisfiability Modulo Theories, pages 1–5, 2009.603

10 Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging of604

SAT and QBF solvers. In Ofer Strichman and Stefan Szeider, editors, Theory and Applications605

of Satisfiability Testing - SAT 2010, 13th International Conference, SAT 2010, Edinburgh,606

UK, July 11-14, 2010. Proceedings, volume 6175 of Lecture Notes in Computer Science, pages607

44–57. Springer, 2010. doi:10.1007/978-3-642-14186-7_6.608

11 Nadia Creignou and Miki Hermann. Complexity of generalized satisfiability counting problems.609

Inf. Comput., 125(1):1–12, 1996. doi:10.1006/inco.1996.0016.610

12 Ermira Daka and Gordon Fraser. A survey on unit testing practices and problems. In 25th611

IEEE International Symposium on Software Reliability Engineering, ISSRE 2014, Naples,612

Italy, November 3-6, 2014, pages 201–211. IEEE Computer Society, 2014. doi:10.1109/ISSRE.613

2014.11.614

13 Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Veripb: The easy way to615

make your combinatorial search algorithm trustworthy. In workshop From Constraint616

Programming to Trustworthy AI at the 26th International Conference on Principles and617

Practice of Constraint Programming (CP’20). Paper available at http://www. cs. ucc.618

ie/bg6/cptai/2020/papers/CPTAI_2020_paper_2. pdf, 2020.619

https://doi.org/10.1016/j.artint.2022.103751
https://doi.org/10.1007/978-3-319-98334-9_46
https://doi.org/10.1017/S1471068419000255
https://doi.org/10.1007/978-3-031-10769-6_3
https://doi.org/10.1007/978-3-031-10769-6_3
https://doi.org/10.1007/978-3-031-10769-6_3
https://ojs.aaai.org/index.php/AAAI/article/view/20283
https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.1006/inco.1996.0016
https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1109/ISSRE.2014.11

Anonymous author(s) 23:17

14 Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming620

solver. In Christine Solnon, editor, 28th International Conference on Principles and Practice621

of Constraint Programming, CP 2022, July 31 to August 8, 2022, Haifa, Israel, volume622

235 of LIPIcs, pages 25:1–25:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.623

doi:10.4230/LIPIcs.CP.2022.25.624

15 Tias Guns. Increasing modeling language convenience with a universal n-dimensional array,625

cppy as python-embedded example. In Proceedings of the 18th workshop on Constraint626

Modelling and Reformulation at CP (Modref 2019), volume 19, 2019.627

16 Marijn J. H. Heule. Proofs of unsatisfiability. In Armin Biere, Marijn Heule, Hans van628

Maaren, and Toby Walsh, editors, Handbook of Satisfiability - Second Edition, volume 336629

of Frontiers in Artificial Intelligence and Applications, pages 635–668. IOS Press, 2021.630

doi:10.3233/FAIA200998.631

17 Ahmet B. Keha, Ketan Khowala, and John W. Fowler. Mixed integer programming formulations632

for single machine scheduling problems. Comput. Ind. Eng., 56(1):357–367, 2009. doi:633

10.1016/j.cie.2008.06.008.634

18 Shuvendu K. Lahiri and Shaz Qadeer. Back to the future: revisiting precise program verification635

using SMT solvers. In George C. Necula and Philip Wadler, editors, Proceedings of the636

35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL637

2008, San Francisco, California, USA, January 7-12, 2008, pages 171–182. ACM, 2008.638

doi:10.1145/1328438.1328461.639

19 Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. Automated unit test generation for640

python. CoRR, abs/2007.14049, 2020. URL: https://arxiv.org/abs/2007.14049, arXiv:641

2007.14049.642

20 Muhammad Numair Mansur, Maria Christakis, Valentin Wüstholz, and Fuyuan Zhang.643

Detecting critical bugs in SMT solvers using blackbox mutational fuzzing. In Prem Devanbu,644

Myra B. Cohen, and Thomas Zimmermann, editors, ESEC/FSE ’20: 28th ACM Joint645

European Software Engineering Conference and Symposium on the Foundations of Software646

Engineering, Virtual Event, USA, November 8-13, 2020, pages 701–712. ACM, 2020. doi:647

10.1145/3368089.3409763.648

21 Matthew J. McIlree and Ciaran McCreesh. Proof logging for smart extensional constraints.649

In Roland H. C. Yap, editor, 29th International Conference on Principles and Practice of650

Constraint Programming, CP 2023, August 27-31, 2023, Toronto, Canada, volume 280 of651

LIPIcs, pages 26:1–26:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL:652

https://doi.org/10.4230/LIPIcs.CP.2023.26, doi:10.4230/LIPICS.CP.2023.26.653

22 Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical study of the reliability of UNIX654

utilities. Commun. ACM, 33(12):32–44, 1990. doi:10.1145/96267.96279.655

23 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and656

Guido Tack. Minizinc: Towards a standard CP modelling language. In Christian Bessiere,657

editor, Principles and Practice of Constraint Programming - CP 2007, 13th International658

Conference, CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings, volume659

4741 of Lecture Notes in Computer Science, pages 529–543. Springer, 2007. doi:10.1007/660

978-3-540-74970-7_38.661

24 Peter Nightingale, Özgür Akgün, Ian P. Gent, Christopher Jefferson, and Ian Miguel. Auto-662

matically improving constraint models in savile row through associative-commutative common663

subexpression elimination. In Barry O’Sullivan, editor, Principles and Practice of Constraint664

Programming - 20th International Conference, CP 2014, Lyon, France, September 8-12, 2014.665

Proceedings, volume 8656 of Lecture Notes in Computer Science, pages 590–605. Springer,666

2014. doi:10.1007/978-3-319-10428-7_43.667

25 Peter Nightingale, Patrick Spracklen, and Ian Miguel. Automatically improving SAT en-668

coding of constraint problems through common subexpression elimination in savile row.669

In Gilles Pesant, editor, Principles and Practice of Constraint Programming - 21st Inter-670

national Conference, CP 2015, Cork, Ireland, August 31 - September 4, 2015, Proceed-671

CVIT 2016

https://doi.org/10.4230/LIPIcs.CP.2022.25
https://doi.org/10.3233/FAIA200998
https://doi.org/10.1016/j.cie.2008.06.008
https://doi.org/10.1016/j.cie.2008.06.008
https://doi.org/10.1016/j.cie.2008.06.008
https://doi.org/10.1145/1328438.1328461
https://arxiv.org/abs/2007.14049
http://arxiv.org/abs/2007.14049
http://arxiv.org/abs/2007.14049
http://arxiv.org/abs/2007.14049
https://doi.org/10.1145/3368089.3409763
https://doi.org/10.1145/3368089.3409763
https://doi.org/10.1145/3368089.3409763
https://doi.org/10.4230/LIPIcs.CP.2023.26
https://doi.org/10.4230/LIPICS.CP.2023.26
https://doi.org/10.1145/96267.96279
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-319-10428-7_43

23:18 Mutational Fuzz-testing for Constraint Modeling Systems

ings, volume 9255 of Lecture Notes in Computer Science, pages 330–340. Springer, 2015.672

doi:10.1007/978-3-319-23219-5_23.673

26 Tobias Paxian and Armin Biere. Uncovering and classifying bugs in maxsat solvers through674

fuzzing and delta debugging. Update reference when published, 2022. URL: http://www.675

pragmaticsofsat.org/2023/live/POS23_paper_4.pdf.676

27 Andrea Rendl. Effective compilation of constraint models. PhD thesis, University of St677

Andrews, UK, 2010. URL: https://hdl.handle.net/10023/973.678

28 Robert Robere, Antonina Kolokolova, and Vijay Ganesh. The proof complexity of SMT solvers.679

In Hana Chockler and Georg Weissenbacher, editors, Computer Aided Verification - 30th680

International Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC681

2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II, volume 10982 of Lecture Notes in682

Computer Science, pages 275–293. Springer, 2018. doi:10.1007/978-3-319-96142-2_18.683

29 Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint684

Programming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006. URL:685

https://www.sciencedirect.com/science/bookseries/15746526/2.686

30 Olivier Roussel and Christophe Lecoutre. XML representation of constraint networks: Format687

XCSP 2.1. CoRR, abs/0902.2362, 2009. URL: http://arxiv.org/abs/0902.2362, arXiv:688

0902.2362.689

31 Gilles Simonin, Christian Artigues, Emmanuel Hebrard, and Pierre Lopez. Scheduling scientific690

experiments for comet exploration. Constraints An Int. J., 20(1):77–99, 2015. URL: https:691

//doi.org/10.1007/s10601-014-9169-3, doi:10.1007/S10601-014-9169-3.692

32 Petar Tahchiev, Felipe Leme, Vincent Massol, and Gary Gregory. JUnit in Action, 2nd693

Edition. Manning Publications Company, 2011. URL: https://www.manning.com/books/694

junit-in-action-second-edition.695

33 Willem Jan van Hoeve. The alldifferent constraint: A survey. CoRR, cs.PL/0105015, 2001.696

URL: https://arxiv.org/abs/cs/0105015.697

34 Willem-Jan van Hoeve and Irit Katriel. Global constraints. In Francesca Rossi, Peter van Beek,698

and Toby Walsh, editors, Handbook of Constraint Programming, volume 2 of Foundations of699

Artificial Intelligence, pages 169–208. Elsevier, 2006. doi:10.1016/S1574-6526(06)80010-6.700

35 Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. Qmaxsatpb: A certified maxsat solver.701

In Georg Gottlob, Daniela Inclezan, and Marco Maratea, editors, Logic Programming and702

Nonmonotonic Reasoning - 16th International Conference, LPNMR 2022, Genova, Italy,703

September 5-9, 2022, Proceedings, volume 13416 of Lecture Notes in Computer Science, pages704

429–442. Springer, 2022. doi:10.1007/978-3-031-15707-3_33.705

36 T.W. Williams, M.R. Mercer, J.P. Mucha, and R. Kapur. Code coverage, what does it mean706

in terms of quality? In Annual Reliability and Maintainability Symposium. 2001 Proceedings.707

International Symposium on Product Quality and Integrity (Cat. No.01CH37179), pages708

420–424, 2001. doi:10.1109/RAMS.2001.902502.709

37 Dominik Winterer, Chengyu Zhang, and Zhendong Su. On the unusual effectiveness710

of type-aware operator mutations for testing SMT solvers. Proc. ACM Program. Lang.,711

4(OOPSLA):193:1–193:25, 2020. doi:10.1145/3428261.712

38 Dominik Winterer, Chengyu Zhang, and Zhendong Su. Validating SMT solvers via semantic713

fusion. In Alastair F. Donaldson and Emina Torlak, editors, Proceedings of the 41st ACM714

SIGPLAN International Conference on Programming Language Design and Implementation,715

PLDI 2020, London, UK, June 15-20, 2020, pages 718–730. ACM, 2020. doi:10.1145/716

3385412.3385985.717

39 Hui Ye, Shaoyin Cheng, Lanbo Zhang, and Fan Jiang. Droidfuzzer: Fuzzing the android718

apps with intent-filter tag. In René Mayrhofer, Luke Chen, Matthias Steinbauer, Gabriele719

Kotsis, and Ismail Khalil, editors, The 11th International Conference on Advances in Mobile720

Computing & Multimedia, MoMM ’13, Vienna, Austria, December 2-4, 2013, page 68. ACM,721

2013. doi:10.1145/2536853.2536881.722

https://doi.org/10.1007/978-3-319-23219-5_23
http://www.pragmaticsofsat.org/2023/live/POS23_paper_4.pdf
http://www.pragmaticsofsat.org/2023/live/POS23_paper_4.pdf
http://www.pragmaticsofsat.org/2023/live/POS23_paper_4.pdf
https://hdl.handle.net/10023/973
https://doi.org/10.1007/978-3-319-96142-2_18
https://www.sciencedirect.com/science/bookseries/15746526/2
http://arxiv.org/abs/0902.2362
http://arxiv.org/abs/0902.2362
http://arxiv.org/abs/0902.2362
http://arxiv.org/abs/0902.2362
https://doi.org/10.1007/s10601-014-9169-3
https://doi.org/10.1007/s10601-014-9169-3
https://doi.org/10.1007/s10601-014-9169-3
https://doi.org/10.1007/S10601-014-9169-3
https://www.manning.com/books/junit-in-action-second-edition
https://www.manning.com/books/junit-in-action-second-edition
https://www.manning.com/books/junit-in-action-second-edition
https://arxiv.org/abs/cs/0105015
https://doi.org/10.1016/S1574-6526(06)80010-6
https://doi.org/10.1007/978-3-031-15707-3_33
https://doi.org/10.1109/RAMS.2001.902502
https://doi.org/10.1145/3428261
https://doi.org/10.1145/3385412.3385985
https://doi.org/10.1145/3385412.3385985
https://doi.org/10.1145/3385412.3385985
https://doi.org/10.1145/2536853.2536881

Anonymous author(s) 23:19

40 Andreas Zeller. Yesterday, my program worked. today, it does not. why? In Oscar Nier-723

strasz and Michel Lemoine, editors, Software Engineering - ESEC/FSE’99, 7th European724

Software Engineering Conference, Held Jointly with the 7th ACM SIGSOFT Symposium725

on the Foundations of Software Engineering, Toulouse, France, September 1999, Proceed-726

ings, volume 1687 of Lecture Notes in Computer Science, pages 253–267. Springer, 1999.727

doi:10.1007/3-540-48166-4_16.728

CVIT 2016

https://doi.org/10.1007/3-540-48166-4_16

23:20 Mutational Fuzz-testing for Constraint Modeling Systems

A Overview of bugs found during experimental evaluation729

We identify 2 OR-Tools bugs, 4 MiniZinc bugs and 8 CPMpy bugs, and give a short description730

in this section.731

Bug 1732

Some mutated models are declared unsatisfiable when solving them using Gecode through733

its MiniZinc interface. Solving with another solver confirms that the models are in fact734

satisfiable. This is a critical soundness bug.735

Bug 2 & 3736

The next 2 bugs are also considered soundness bugs in MiniZinc but are not as severe as737

the first one. There are some models where MiniZinc does not output a value for all the738

variables after solving. This happens for most but not all of the available solvers within739

MiniZinc. The reason we count 2 different bugs is that a third similar bug has already been740

solved after HURRICANE found it earlier on, but this didn’t resolve the ones we found here.741

Further distinction lies in the fact that Bug 2 occurs when solving to satisfiability and Bug 3742

happens when solving to optimality.743

Bug 4744

When using MiniZinc python some models do not respect the given time limit when solving.745

This is due to the compiler optimisation phase getting stuck.746

Bug 5747

A bug in CPMpy’s MiniZinc interface, that causes a crash when a nested sum appears in the748

arguments of the global constraint: AllDifferentExcept0.749

Bug 6750

A bug in CPMpy’s MiniZinc interface, that causes a crash when the Count global constraint751

appears as an argument in a weighted sum.752

Bug 7753

The helper function canonical_comparison contained a bug where weighted sums were754

incorrectly transformed. This is a soundness bug.755

Bug 8756

Inconsistent implementation of the relational semantics for constraint modeling languages757

meant that handling of partial functions such as Element leads to missing solutions where758

the constraint is undefined, but occurs in a nested context.759

Bug 9760

CPMpy’s helper function is_bool did not recognise a specific datatype to be Boolean.761

Anonymous author(s) 23:21

Bug 10762

The internal transformation canonical_comparison can create weighted sums with zero763

arguments, leading to a crash later in the transformation pipeline.764

Bug 11765

An assertion error gets triggered in the internal function canonical_comparison, when a766

CPMpy sum operator is encountered that only contains integers and no variables.767

Bug 12768

An equation between an integer and a Boolean expression was treated as reification by the769

flatten transformation of CPMpy.770

Bug 13771

Crash in the OR-Tools solver causing the Python runtime environment to crash.772

Bug 14773

A soundness bug in OR-Tools’ presolve where the ordering of constraints influences whether774

a model was declared to be satisfiable or not.775

A.1 Occurences of each bug776

In Table 5 and Table 6, we show the unaggregated data of how many times each bug was777

found by HURRICANE during our experimental evaluation.778

CVIT 2016

23:22 Mutational Fuzz-testing for Constraint Modeling Systems

Table 5 Bugs found by different verification methods when running with MiniZinc

Verif #mut B1 B2 B3 B4 B5 B6 B7 B8 B9 #bugs #models

All sol

1 - - - - 1 - - 23 - 24 3492
2 - - - - 2 - - 59 - 61 3594
5 2 - - - 5 1 36 86 13 143 3242
10 - - - 1 1 - 38 28 16 84 839

counting

1 - - - - 1 - - 24 - 25 3633
2 - - - - - - - 61 - 61 3655
5 2 - - - 3 1 40 94 15 155 3496
10 1 - - - 1 - 39 28 15 84 839

One sol

1 - - 66 - 15 - - 133 - 214 65029
2 - - 68 - 29 4 1 429 2 533 64725
5 2 - 91 - 108 8 12 903 32 1156 61554
10 - - 6 1 7 - 3 60 3 80 3187

sat

1 - - - - 26 - - - - 26 88981
2 - - - - 61 6 - - 1 68 87419
5 1 - - 1 6 1 - - 2 11 6554
10 1 - - - 6 1 - - 3 11 3165

opt

1 - - - - - - - - - - 57242
2 - - - - - - - - - - 57134
5 2 - - - - - 28 - - 30 54038
10 2 7 - - - - 155 - - 164 49161

B Reformulations as mutations779

We summarize the constraint reformulations implemented in CPMpy which are used in our780

mutational testing framework.781

Unnesting and normalization of lists782

This transformation is the first in the transformation pipeline of any solver implemented in783

CPMpy and all subsequent transformation expect as input a flat list of constraints. This784

Additionally any conjunction at the top-level of the constraint model will be split up into785

separate constraints786

Munnest([c1, [c2, c3], [c4 ∧ c5]])787
788

with cn, n ∈ 1..5 being arbitrary constraints, results in789

[c1, c2, c3, c4, c5]790
791

Flattening792

Makes sure no nested constraints remain in the expression tree. This reformulation introduces793

a fresh variable to be equated with a (numerical) expression and un-nests each constraint794

accordingly. The output of this reformulation is a set of Boolean expressions within a795

restricted grammar defined by CPMpy’s developers. For example, given the expression list796

[AllDifferent(Min(w, x), y, z)] (2)797

Anonymous author(s) 23:23

Table 6 Bugs found by different verification methods when running with OR-Tools

Verif #mut B7 B8 B9 B10 B11 B12 B13 B14 #bugs #models

All sol

1 - 26 - - - - - - 26 4102
2 - 64 - - - - - - 64 3786
5 37 95 13 - - - - - 145 3332
10 116 70 38 - - - - 1 225 2221

Counting

1 - 26 - - - - - - 26 4152
2 - 69 - - - - - - 69 4128
5 42 117 16 - - - 1 1 177 3718
10 139 78 43 - - - - 7 267 2553

One sol

1 - 5695 - - - - - - 5695 2226130
2 6 10761 79 - - - - - 10846 1400180
5 84 7449 212 1 - - - - 7746 412874
10 71 1250 80 1 6 - - - 1408 56001

Sat

1 - - - - - - - - - 1958248
2 4 - 19 - - - - - 23 1292747
5 40 - 55 1 - - - - 96 379361
10 28 - 29 1 3 - - - 61 49044

Opt

1 - - - - - - - - - 4973786
2 - - - - - - - - - 3971747
5 811 - - - - - - - 811 1471156
10 820 - - - - 2 - - 822 234891

the result of the flattening is798

[AllDifferent(e, y, z), e = Min(w, x)] (3)799

with e an auxiliary variable with the right bounds.800

Decomposing global constraints801

This function is one of the elementary operations in constraint modeling languages. While802

many CP-solvers support a variety of global constraints, these advanced relations between803

variables are oftentimes not supported by solvers from other solving paradigms. Hence,804

when a model containing a global constraint has to be solved by for example an SMT-solver,805

it needs to be decomposed into simpler expressions first. This reformulation does exactly806

that. For example, if AllDifferent is not supported by the solver, it is decomposed to a807

conjunction of pairwise disequality constraints.808

Unnesting of reified constraints809

This transformation is applied to ensure no unsupported expressions remain reified. For some810

of the backend solvers in the CPMpy library, reification is only supported on a subset of811

expressions. This reformulation is applied after flattening, and ensures further unnesting such812

that only reifications of supported constraints remain. For example, given the unsupported813

expression b →Max(x, y, z) ≤ 10, a valid transformation in order to remove the reification814

of the Max is815

(b → a ≤ 10) ∧ (Max(x, y, z) = a) (4)816

CVIT 2016

23:24 Mutational Fuzz-testing for Constraint Modeling Systems

with a an auxiliary variable with the appropriate bounds. Input constraints must not contain817

unsupported global constraints, and must be flattened first.818

Only half-reification819

It removes all “full reification constraints” from the expression tree and ensures all reifications820

end up in the form b → bexpr . This transformation always has to be preceded by the previous821

only boolean variables reify transformation. For each constraint of the type b ↔ bexpr , two822

half-reification constraints are introduced: b → bexpr and ¬b → ¬bexpr . This transformation823

also simplifies the negated Boolean expression whenever possible. For example, given b↔ x∧y824

as input, the transformation returns {b→ x ∧ y and ¬b→ (¬x ∨ ¬y)}.825

Normalization of reifications826

This transformation rewrites any reification such that the Boolean variable occurs on the827

left hand side. E.g., constraints of the type bexpr → b are rewritten to ¬b → ¬bexpr ,828

full-reification constraints bexpr ↔ b are swapped to b ↔ bexpr . Similar to the previous829

transformation, negated Boolean expressions are simplified when possible. Input constraints830

must be flat.831

Linearize832

It ensures any flattened constraint is transformed into a canonicalized linear constraint, i.e.,
a comparison with a weighted sum of integer or Boolean variables on the left-hand side and
a constant on the right-hand side. The ouput is thus always of the form∑

wixi ⟨cmp⟩ c

where ⟨cmp⟩ is the one of the comparison operator allowed (=,≤ or ≥), the wi are the833

integer weights and xi the Boolean/integer variables. Before linearizing, unsupported global834

constraints must be decomposed, and must contain only boolean implications.835

Normalized numerical expressions836

This transformation is targeted to be used with solvers that don’t support comparisons (<,837

≤, ≥, >, ̸=) between an expression and a constant. An auxiliary variable is thus required to838

transform it into a simple comparison. For example, if Max(x, y, z) ≤ 10 is not supported,839

it will be transformed into840

(Max(x, y, z) = e) ∧ (e ≤ 10) (5)841

by using the auxiliary variable e (with appropriate bounds). Input constraints must be flat.842

Converting negated Boolean variables843

After linearization of a set of constraints, it helps make the constraints more compatible844

with the API of a typical Mixed Integer Programming solver. Pseudo-Boolean constraints845

(weighted-sum over Boolean variables) are converted such that only positive Boolean variables846

remain on the left-hand side of the comparisons. For example, the expression ¬p + q + r ≥ 1847

is re-written as −p + q + r ≥ 0 by creating a negative weight and allowing no negation848

operator in the formula. Input constraints must be linear.849

Anonymous author(s) 23:25

Conversion of flat expressions to CNF850

It is required when using SAT-solvers as backend solvers. This transformation rewrites any851

Boolean operator with Boolean variables as arguments to CNF. For example, (w∧x)∨ (y∧ z)852

is re-written in853

(w ∨ y) ∧ (w ∨ z) ∧ (x ∨ y) ∧ (x ∨ z) (6)854

Input must ensure only boolean implications855

Push negation to leaves856

This one simplifies the number of nodes in the expression tree. The reformulation applies857

simple equivalence rules such as DeMorgan’s laws to make sure the only negation operators858

left in the tree are bound to Boolean variables or global constraints. For example, it would859

transform the expression ¬(a ∨ b) into ¬a ∧ ¬b, or the expression ¬(a ≤ b) into a > b.860

The negation of a global constraint such as ¬AllDifferent(a, b, c) can not be simplified861

any further, except by decomposing the global constraint first. This will happen in the862

“decomposing globals” transformation, depending on solver support.863

Simplification of Boolean comparisons864

This operation can be done when a Boolean expression is compared to a constant. In that865

case, it is trivial to convert the Boolean expression at hand to itself or to its negation. For866

example, comparison b < 1, where b is a Boolean variable, can be simplified to ¬b. And867

b ≥ True can be converted to just the literal b.868

CVIT 2016

	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Solvers and modeling systems
	3.2 CPMpy

	4 Mutational testing
	5 Mutations
	5.1 Reformulation mutations
	5.2 Top-level mutations
	5.3 Subexpression mutations

	6 Verification methods
	6.1 All-solutions
	6.2 Solution count
	6.3 1-solution
	6.4 Satisfiability
	6.5 Optimization

	7 Dealing with bugs
	7.1 Soundness bugs
	7.2 Crashes
	7.3 Performance issues
	7.4 Minimizing buggy models

	8 Summary of found bugs
	9 Experimental evaluation
	9.1 EQ1: effect of number of mutations
	9.2 EQ2: effect of verification methods
	9.3 EQ3: effect on code coverage

	10 Discussion and future work
	A Overview of bugs found during experimental evaluation
	A.1 Occurences of each bug

	B Reformulations as mutations

