
Under consideration for publication in Theory and Practice of Logic Programming 1

On Local Domain Symmetry for Model Expansion

Jo Devriendt†, Bart Bogaerts‡,†, Maurice Bruynooghe†, Marc Denecker†

†KU Leuven – University of Leuven, Celestijnenlaan 200A, Leuven, Belgium
(e-mail: firstname.lastname@cs.kuleuven.be)

‡ Helsinki Institute for Information Technology HIIT, Aalto University, FI-00076 AALTO, Finland

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Symmetry in combinatorial problems is an extensively studied topic. We continue this research in the con-
text of model expansion problems, with the aim of automating the workflow of detecting and breaking
symmetry. We focus on local domain symmetry, which is induced by permutations of domain elements, and
which can be detected on a first-order level. As such, our work is a continuation of the symmetry exploita-
tion techniques of model generation systems, while it differs from more recent symmetry breaking tech-
niques in answer set programming which detect symmetry on ground programs. Our main contributions are
sufficient conditions for symmetry of model expansion problems, the identification of local domain inter-
changeability, which can often be broken completely, and efficient symmetry detection algorithms for both
local domain interchangeability as well as local domain symmetry in general. Our approach is implemented
in the model expansion system IDP, and we present experimental results showcasing the strong and weak
points of our approach compared to SBASS, a symmetry breaking technique for answer set programming.

1 Introduction

Many problems exhibit symmetry. For instance, the set of trucks in a routing problem is inter-
changeable, a chess board can be mirrored onto itself, an input graph has non-trivial automor-
phisms, etc. It is a well-known burden of combinatorial search engines that they visit each of the
(potentially exponentially many) symmetric areas of their search space, and hence waste valu-
able time rediscovering already known information. In order to solve this problem, research on
symmetry has been extensive, especially in the constraint programming (CP) (Gent et al. 2006)
and satisfiability solving (SAT) community (Sakallah 2009).

For logic-based systems, much work has been done in the context of theorem proving and finite
model generation systems (Zhang and Zhang 1995; Audemard and Benhamou 2002; Claessen
and Sörensson 2003; Torlak and Jackson 2007). With the advent of answer set programming
(ASP), interest in symmetry for logics is renewed (Drescher et al. 2011).

In this paper, we continue research on symmetry in classical logic, with a focus on symmetry
for model expansion problems. We propose the notion of local domain symmetry in Section 3, a
common form of symmetry stemming from permutations of domain elements. We show in Sec-
tion 4 how local domain interchangeability, a particular type of local domain symmetry, can be
broken completely with a linear number of symmetry breaking constraints. Section 5 gives a de-
tection algorithm for local domain symmetry in general, and for local domain interchangeability
in particular. These detection algorithms operate on a first-order level, hence they avoid the com-
putational blow-up of a ground theory. In Section 6, we experimentally compare our approach to
state-of-the-art ASP symmetry breaking which performs symmetry detection on the ground the-
ory. These experiments confirm that symmetry detection at the first order level is indeed faster,

2 Jo Devriendt et al.

and in some cases, we achieve stronger symmetry breaking. However, there are also cases where
less symmetry is detected. We conclude in Section 7. Proofs are postponed to Appendix A.

2 Preliminaries

We assume familiarity with the basics of first-order logic. A vocabulary Σ is a set of predicate
symbols P/n of arity n≥ 0 and function symbols f/n of arity n≥ 0. Often, we will simply refer
to a symbol S/n ∈ Σ, which represents an n-ary predicate or function symbol. Variables, terms,
atoms, quantifiers, formulas and theories are defined as usual (Enderton 2001). A Σ-theory T is
a theory with vocabulary Σ, i.e., such that the free symbols of T are all in Σ.

Slightly deviating from the standard presentation of first-order logic, we consider both vari-
ables and constants to be function symbols of arity 0, as they both serve to identify a single
domain element. Without loss of generality, we assume variables are renamed apart, i.e., each
variable is bound by at most one quantifier. This simplifies the presentation of our results.

A Σ-structure I consists of a domain D and an interpretation to each symbol in Σ. For each
n-ary predicate symbol P, interpretation PI is an n-ary relation on D, i.e., PI ⊆ Dn. For an n-ary
function f , interpretation f I is an n-ary function Dn→D. If Σ-structure I and Σ′-structure I′ have
the same domain D and Σ∩Σ′ = /0, It I′ is the Σ∪Σ′-structure over D that interprets all symbols
in Σ according to I and all symbols in Σ′ according to I′. If I is a Σ-structure with domain D, x
a 0-ary function symbol, and d ∈ D, then we use I[x : d] for the Σ∪{x}-structure that equals I,
except for interpreting x by d. Because variables are considered 0-ary function symbols as well,
the notion of “variable assignment”, which is used in the classical presentation of first-order
logic, is subsumed by our notion of structure extension I[x : d].

The value tI of a term t in a structure I is a domain element d ∈ D, and is defined as usual
(assuming I interprets all symbols in t). The truth value ϕ I of a formula ϕ in a structure I is either
true or false, and is also defined as usual. A Σ-structure I is a model of a Σ-theory T (written as
I |= T) if for each formula ϕ in T , ϕ I is true. Many combinatorial problems can be conveniently
modelled as a model expansion problem MX(T , Iin), where T is a Σ-theory T and Iin is a Σin-
structure with Σin ⊆ Σ. We refer to Σin as the input vocabulary, and Σout = Σ \Σin as the output
vocabulary. A solution to a model expansion problem MX(T , Iin) with output vocabulary Σout is
a Σout -structure Iout (sharing Iin’s domain) such that Iint Iout |= T ; Iint Iout is a model to T that
expands Iin.

3 Symmetries

Throughout this section, we assume a fixed domain D and use ΓD to refer to the set of all struc-
tures with domain D.

As a running example, we use a simple graph coloring problem.

Example 3.1
Let Σgc be the vocabulary consisting of predicate symbols V/1, C/1, Edge/2 and a function
symbol Color/1. A valid colored graph is expressed by the theory Tgc:

∀x1 y1 : Edge(x1,y1)⇒ (Color(x1) 6=Color(y1))

∀x2 y2 : Edge(x2,y2)⇒V (x2)∧V (y2)

∀x3 : C(Color(x3))

On Local Domain Symmetry for Model Expansion 3

Let Σgcin = Σgc \{Color/1}. Input data containing vertices, colors and a graph is expressed as a
Σgcin-structure Igcin with domain D = {t,u,v,w,r,g,b}, with interpretations

V Igcin = {t,u,v,w} EdgeIgcin = {(t,u),(u,v),(v,w),(w, t)} CIgcin = {r,g,b}.

The model expansion problem MX(Tgc, Igcin) now consists of finding a Σgcout = {Color/1}-
structure Igcout such that Igcint Igcout |= Tgc. We let Igcout contain the interpretation

ColorIgcout = t 7→ r,u 7→ g,v 7→ b,w 7→ g,r 7→ r,g 7→ g,b 7→ b

which represents a valid coloring of the input graph. Indeed, Igc = Igcint Igcout |= Tgc. O

3.1 Symmetry of a theory

Definition 3.2 (Symmetry)
A mapping σ : ΓD→ ΓD is a structure transformation. A structure transformation σ is a symme-
try for Σ-theory T if for all Σ-structures I ∈ ΓD, I |= T iff σ(I) |= T .

The set of symmetries of T forms a group under composition (◦). In this paper, we study
how to detect and exploit symmetries. Detecting all symmetries of a theory is computationally
at least as hard as deciding whether the theory is satisfiable (if not, all structure transformations
are symmetries). Instead, we focus on symmetries that can be detected by means of syntactical
analysis, and that are induced by permutations of domain elements.

Definition 3.3 (Domain permutation)
A bijection π : D → D is a domain permutation. A domain permutation induces a structure
transformation σπ : for each predicate symbol P/n, (π(d1), . . . ,π(dn)) ∈ Pσπ (I) iff (d1, . . . ,dn) ∈
PI , and for each function symbol f/n, f σπ (I)(π(d1), . . . ,π(dn)) = π(d) iff f I(d1, . . . ,dn) = d.

Proposition 3.4
Any structure transformation induced by a domain permutation is a symmetry for any theory.

We call this type of symmetry induced by only a domain permutation global domain symmetry.
We use cycle notation to compactly represent permutations, e.g., (a b c)(d e) is a permutation

that maps element a to b, b to c, c to a, swaps d and e, and maps any other element to itself.

Example 3.5 (Example 3.1 continued)
The domain permutation (v r) induces a global domain symmetry σ(v r) of Tgc. σ(v r)(Igc) gives

D = {t,u,v,w,r,g,b} V σ(v r)(Igc) = {t,u,r,w} Edgeσ(v r)(Igc) = {(t,u),(u,r),(r,w),(w, t)}
Cσ(v r)(Igc) = {v,g,b} Colorσ(v r)(Igc) = t 7→ v,u 7→ g,r 7→ b,w 7→ g,v 7→ v,g 7→ g,b 7→ b,

which is still a model of Tgc (though r now acts as a vertex and v as a color). O

Finite model generators such as KODKOD (Torlak and Jackson 2007) or SEM (Zhang and
Zhang 1995) focus on the task of generating a model with a given domain for a given theory.
Since every domain permutation induces a global domain symmetry, these systems have mecha-
nisms to cope with global domain symmetry.

However, a global domain symmetry σπ is a rather restrictive concept as it applies π on every
argument of every tuple in every interpretation of a structure. A larger class of transformations
can be described when π is only applied locally. For example, one could apply π only on the

4 Jo Devriendt et al.

interpretation of some symbols, or even more fine-grained, only on some of the arguments in the
tuples of an interpretation. Given a predicate or function symbol S/n, we use S|i with 1≤ i≤ n to
denote the ith argument position of S; if S is a function symbol, we use S|0 for the output argument
of S. Note that variables, being treated as function symbols, also form argument positions.

Definition 3.6 (Structure transformation induced by A,π)
Let π be a domain permutation and A a set of argument positions. The structure transformation
σA

π induced by A,π is defined by

(τP|1(d1), . . . ,τP|n(dn)) ∈ PσA
π (I) iff (d1, . . . ,dn) ∈ PI

f σA
π (I)(τ f |1(d1), . . . ,τ f |n(dn)) = τ f |0(d0) iff f I(d1, . . . ,dn) = d0

where τS|i(d) = π(d) if S|i ∈ A and τS|i(d) = d otherwise.

Thus, for each domain tuple in the interpretation of a symbol S, the structure transformation
induced by A,π only applies π to domain elements that occur at an index i corresponding to
an argument position S|i ∈ A. Note that if A contains argument positions over symbols S not
interpreted by I (e.g., variable symbols), those argument positions are simply ignored by σA

π .

Definition 3.7 (Local domain symmetry)
Let T be a theory. A local domain symmetry for T is a structure transformation induced by a set
of argument positions A and a domain permutation π , that also is a symmetry for T .

A global domain symmetry σπ for a Σ-theory is a local domain symmetry σA
π where A includes

all argument positions of all symbols in Σ. As such, local domain symmetry is a generalization of
global domain symmetry, and allows us to detect and exploit more symmetry. However, not all
A,π-induced structure transformations are symmetries. Below, we propose a syntactic criterion
to identify a set of argument positions A that guarantees that σA

π is a symmetry for a given theory.
Intuitively, the criterion can be formulated as follows: whenever a term f (. . .) occurs as the i’th
argument in a predicate or function symbol S, then f |0 ∈ A if and only if S|i ∈ A.

Definition 3.8
Let T be a theory. Assume f |0 and S|i are argument positions with S either a predicate or a
function symbol. We call f |0 and S|i directly connected by T if one of the following holds:
• an expression S(t1, . . . , ti−1, f (t ′), ti+1, . . . , tn) occurs in T , or
• i = 0 and an expression S(t) = f (t ′) occurs in T .

A set A of argument positions is connectively closed under T if for each S|i ∈ A, each argument
position R| j directly connected to S|i by T , is also in A.

Example 3.9 (Example 3.1 continued)
According to the first formula in Tgc, x1|0 is directly connected to Edge|1 and Color|1, while
y1|0 is directly connected to Edge|2 and Color|1. Analyzing all formulas, we find the following
two sets are connectively closed under Tgc: A = {C|1,Color|0} and B = {V |1, Edge|1, Edge|2,
Color|1, x1|0, y1|0, x2|0, y2|0, x3|0}.

Applying the induced structure transformation σA
(v r) on Igc gives

D = {t,u,v,w,r,g,b} V σA
(v r)(Igc) = {t,u,v,w} EdgeσA

(v r)(Igc) = {(t,u),(u,v),(v,w),(w, t)}
CσA

(v r)(Igc) = {v,g,b} ColorσA
(v r)(Igc) = t 7→ v,u 7→ g,v 7→ b,w 7→ g,r 7→ v,g 7→ g,b 7→ b

which is also a model of Tgc (here, domain element v serves both as a vertex and a color). O

On Local Domain Symmetry for Model Expansion 5

Theorem 3.10 (Local domain symmetry condition)
Let Σ be a vocabulary, T a theory over Σ, π a domain permutation and A a set of argument
positions. If A is connectively closed under T , then σA

π is a local domain symmetry of T .

This theorem is useful when detecting symmetry for model expansion problems with an empty
input structure, but it will also prove useful for non-empty input structures.

Example 3.11 (Example 3.9 continued)
The argument position set A induces local domain symmetries that correspond to permuting the
colors of a graph coloring problem, while B induces symmetry on the vertices and A∪B induces
global domain symmetries. O

3.2 Symmetry for model expansion

Recall that a model expansion problem MX(T , Iin) consists of finding structures Iout such that
Iint Iout |= T .

Definition 3.12 (Symmetry for MX)
Let MX(T , Iin) be a model expansion problem with output vocabulary Σout , and let Γ

Σout
D be the

set of Σout -structures with domain D. A structure transformation σ : Γ
Σout
D → Γ

Σout
D is a symmetry

of MX(T , Iin) if for each Iout ∈ Γ
Σout
D , Iint Iout |= T iff Iintσ(Iout) |= T .

Analogous to Definition 3.6, a domain permutation π and argument position set A induce a
structure transformation σA

π on Γ
Σout
D . We call σA

π a local domain symmetry of MX(T , Iin) if σA
π

is a symmetry of MX(T , Iin).

Example 3.13 (Example 3.1 continued)
Let A be the argument position set {V |1,Edge|1,Edge|2,Color|1,x1|0,y1|0,x2|0,y2|0,x3|0}. Ob-
serve that A is connectively closed under Tgc and that the induced structure transformation
σA
(t u v w) is a local domain symmetry of MX(Tgc, Igcin). However, connectively closedness un-

der the theory is neither a sufficient nor a necessary condition for an A,π-induced structure
transformation to be a symmetry of a model expansion problem.

For instance, argument position set B = {Edge|1,Edge|2,Color|1,x1|0,y1|0,x3|0} is not con-
nectively closed under Tgc, though σB

(t u v w) is still a symmetry of MX(Tgc, Igcin).
Moreover, since A is connectively closed, σA

(v r) is a local domain symmetry of Tgc, but it is
not a symmetry of MX(Tgc, Igcin). Indeed,

ColorσA
(v r)(Igcout) = t 7→ v,u 7→ g,v 7→ b,w 7→ g,r 7→ v,g 7→ g,b 7→ b

maps t and r to node v, which is not consistent with ∀x3 : C(Color(x3)) and CIgcin . O

The above example shows that for model expansion, local domain symmetries are useful, but
Theorem 3.10 does not suffice to identify them. Below, we give a sufficient condition for A,π-
induced structure transformations to be local domain symmetries of a model expansion problem.
For this, we require the notion of a decomposition.

Definition 3.14
Let MX(T , Iin) be a model expansion problem with input vocabulary Σin. Also, let T ∗ be equal
to T with each occurrence of a symbol S ∈ Σin replaced by a unique new copy Si, let Σ∗in be the
vocabulary containing all copy symbols Si, and let I∗in be the Σ∗in-structure where for each copy

Si, SI∗in
i = SIin . We call MX(T ∗, I∗in) the decomposition of MX(T , Iin).

6 Jo Devriendt et al.

It is clear that a model expansion problem and its decomposition have the same solutions, as they
have the same output vocabulary and as each occurrence of a copy Si in T ∗ imposes the same
constraints on models for T ∗ as S did for T (since SI∗in

i = SIin).

Example 3.15 (Example 3.13 continued)
Let MX(T ∗gc, I

∗
gcin) be the decomposition of MX(Tgc, Igcin). T ∗gc consists of

∀x1 y1 : Edge1(x1,y1)⇒ (Color(x1) 6=Color(y1))

∀x2 y2 : Edge2(x2,y2)⇒V1(x2)∧V2(y2)

∀x3 : C1(Color(x3))

O

Theorem 3.16 (Local domain symmetry condition for MX)
Let MX(T , Iin) be a model expansion problem with decomposition MX(T ∗, I∗in). If A is connec-
tively closed under T ∗ and σA

π (I
∗
in) = I∗in then σA

π is a symmetry for MX(T , Iin).

Example 3.17 (Example 3.15 continued)
Argument position set A = {Edge1|1,Edge1|2,Color|1,x1|0,y1|0,x3|0} is connectively closed
under T ∗gc, and σA

(t u v w)(I
∗
gcin) = I∗gcin. Thus, σA

(t u v w) is a symmetry of MX(Tgc, Igcin), exploiting
cyclicity of the input graph. However, σA

(t u) is not a symmetry of MX(Tgc, Igcin), as the input
interpretation of Edge1 is not preserved by swapping t and u. O

Note that if Σin = /0, the conditions of Theorem 3.16 degenerate into the conditions of The-
orem 3.10. Also, for σA

π satisfying Theorem 3.16, A typically contains argument positions over
both Σout and the decomposed Σ∗in (as well as over variables). Lastly, the requirement that A is
connectively closed under T ∗ is weaker than being closed under T . For example, let T be P(f)∨
P(g), with only P interpreted by the input structure. The only connectively closed set under T
is {P|1, f |0,g|0}. However, under the corresponding decomposition theory T ∗ = P1(f)∨P2(g),
there are three connectively closed sets: {P1|1, f |0}, {P2|1,g|0} and their union.

3.3 Subdomain interchangeability

Local domain symmetries for a theory T can be identified by computing argument position sets
A that are connectively closed. Then, as mentioned in Section 3.1, any permutation π of the
domain D gives rise to a local domain symmetry σA

π . For model expansion, σA
π must preserve the

input structure, so not all π are guaranteed to induce symmetry. However, given a suitable set of
argument positions A, a subdomain δ ⊆ D might exist for which any permutation of δ induces a
symmetry of the model expansion problem.

Definition 3.18 (A-interchangeable subdomain)
Let MX(T , Iin) be a model expansion problem, A a set of argument positions and δ a subset
of the domain. δ is an A-interchangeable subdomain if for every permutation π over δ , the
structure transformation σA

π induced by A,π is a local domain symmetry for MX(T , Iin). The
subdomain interchangeability group GA

δ
is the group of all local domain symmetries induced by

an A-interchangeable subdomain δ .

On Local Domain Symmetry for Model Expansion 7

Example 3.19 (Example 3.1 continued)
Given MX(Tgc, Igcin), {r,g,b} and {t,u,v,w} are A-interchangeable subdomains for A = {C|1,
Color|0}. For B = {V |1,Edge|1,Edge|2,Color|1,x1|0,y1|0,x2|0,y2|0,x3|0}, {r,g,b} is a B-in-
terchangeable subdomain. However, as σB

(t u) does not preserve the interpretation of Edge, {t,u,v,
w} is not a B-interchangeable subdomain. O

Many problems, when modelled as a model expansion problem, exhibit subdomain inter-
changeability. For instance, a set of nurses in a scheduling problem, a set of colors in a graph
coloring problem, or a set of trucks in a planning problem often are interchangeable subdomains.

Subdomain interchangeability groups contain a number of symmetries factorial in the size
of the interchangeable subdomain, leading to an exponential slowdown of many combinatorial
search algorithms. However, as we show in Section 4, many subdomain interchangeability groups
can be completely broken with a number of constraints linear in the size of the subdomain.

3.4 More symmetry

Even though local domain symmetry is a useful form of symmetry, it does not capture all sym-
metry properties that might be present in a model expansion problem.

Example 3.20 (Example 3.1 continued)
The graph coloring problem MX(Tgc, Igcin) asks to color a circular directed graph of 4 vertices
{t,u,v,w}. Note that given any satisfying coloring for this graph, swapping the colors of t and v
(or u and w) keeps Tgc satisfied. This is a clear symmetry property of the graph coloring instance,
but it cannot be captured using the notion of local domain symmetry as defined in this paper. For
instance, if we take the argument position set A = {V |1,Edge|1,Edge|2,Color|1} representing
symmetry in the vertices, then the induced structure transformation σA

(t v) is not a symmetry of
MX(Tgc, Igcin) since it does not preserve the interpretation of Edge.

One way to fix this is based on the observation that argument positions Edge|1 and Edge|2 are
indistinguishable in Tgc: in each sentence of Tgc, one could swap any quantifier over Edge|1 with
one over Edge|2, ending up with a sentence equivalent to the original one. In more bold words,
argument positions Edge|1 and Edge|2 themselves are symmetric. This symmetry property can
be captured by generalizing the notion of an A,π-induced structure transformation to allow for
swaps or permutations of argument positions.

For instance, we could define σ
(Edge|1 Edge|2)(t v)
A to first map EdgeIgcin to {(e,d) | (d,e) ∈

EdgeIgcin} before applying σ
(t v)
A . Note that σ

(Edge|1 Edge|2)(t v)
A would preserve EdgeIgcin and Igcin

in general, while also preserving satisfaction to Tgc, making it a symmetry of MX(Tgc, Igc). O

Similarly, problems with spatial properties often have rotational or reflectional symmetry,
which is not covered by the presented notion of local domain symmetry. One such example
is the N-Queens problem, which is experimentally investigated in Section 6.

4 Symmetry breaking and local domain interchangeability

A standard approach of dealing with symmetry extends the theory with symmetry breaking con-
straints that eliminate symmetric solutions while guaranteeing that at least one solution to the
original problem is preserved (if it exists). This way, a search algorithm will not get stuck in

8 Jo Devriendt et al.

parts of the search space symmetric to those already explored. A set of symmetry breaking con-
straints ϕ is sound for a symmetry group G if for each solution I, there exists at least one σ ∈G
such that σ(I) satisfies ϕ; it is complete if there exists at most one such σ ∈G (Walsh 2012).

Often, symmetry breaking is done by defining a lexicographical order over the set of candidate
solutions. For a given symmetry, so-called lex-leader constraints then encode that each solution’s
symmetrical image cannot be strictly smaller under the defined lexicographical order. As long as
the chosen lexicographical order is fixed, the conjunction of lex-leader constraints for any set of
symmetries is sound.

In a model expansion context, the set of candidate solutions Γ
Σout
D consists of all Σout -structures

with domain D. A logical formula that is added to the theory takes over the role of a constraint.
We construct a lexicographical order �Γ over Γ

Σout
D from an order �D over D and an order �Σout

over Σout . Then, Iout ≺Γ Iout
′ iff there exists some symbol S ∈ Σout and domain element tuple d̄

such that d̄ 6∈ SIout , d̄ ∈ SIout
′
, and for all d̄′ ≺D d̄ it holds that d̄′ ∈ SIout ⇔ d̄′ ∈ SIout

′
, and for all

S′ ≺Σout S, it holds that S′Iout = S′Iout
′
. For the remainder of this section, we leave the order over

Σout implicit, but explicitly state the order �D over D, as this turns out to be important. Given a
model expansion problem with symmetry σ and a lexicographical order over Γ

Σout
D with �D as

D-order, we use lex�D(σ) to refer to the logical formula encoding the lex-leader constraint for σ .
Efficient encodings of the lex-leader constraint into formulas are well-known (Sakallah 2009).

Example 4.1 (Example 3.1 continued)
Let t ≺D u ≺D v ≺D w ≺D r ≺D g ≺D b and A = {C|1,Color|0}. For MX(Tgc, Igcin), the local
domain symmetry σA

(r g) is broken by the lex-leader constraint lex�D(σA
(r g)), which informally

implies that for each vertex v, if all vertices v′ ≺D v are not colored by r or by g, then v cannot be
colored with r. Amongst others, this constraint cuts away Σout -structures that color t with r. O

Note that lex-leader constraints are constructed for individual symmetries. In general, to obtain
a complete symmetry breaking constraint for a symmetry group G, one needs to post lex�D(σ)

for each σ ∈G. As symmetry groups can contain a factorial amount of symmetries this is infea-
sible, e.g., in the case of subdomain interchangeability. Instead, the standard approach is partial
symmetry breaking, where lex�D(σ) is posted for a minimal set of generators σ of G (Aloul et al.
2006). Partial symmetry breaking is feasible, but does not guarantee that G is broken completely,
leaving symmetrical parts of the search space open to a search engine.

For instance, for a subdomain interchangeability group GA
δ

, a minimal set of generator sym-
metries is {σA

(d s(d)) | d,s(d) ∈ δ}, where s(d) is the successor of d in δ according to �D. Other
minimal generator sets exist as well, e.g., {σA

(d0 d) | d ∈ δ ,d 6= d0} for a fixed d0 ∈ δ . How-
ever, the choice of the generator set influences the power of the symmetry breaking formula. For
subdomain interchangeability groups G, choosing the right generator set can guarantee that the
lex-leader constraints used in partial symmetry breaking are actually complete for G:

Theorem 4.2
Let MX(T , Iin) be a model expansion problem, δ an A-interchangeable subdomain, �D a total
order on domain D and s(d) the successor of d in δ according to �D. If A contains at most one
argument position S|i for each symbol S ∈ Σout , then the conjunction of lex-leader constraints

{lex�D(σA
(d s(d))) | d,s(d) ∈ δ}

is a complete symmetry breaking constraint for the subdomain interchangeability group GA
δ

.

On Local Domain Symmetry for Model Expansion 9

A strongly related result is that when constructing a relation R ⊆ D1 × . . .×Dn for which
exactly one dimension Di contains interchangeable values, an efficient lex-leader constraint exists
that completely breaks the resulting symmetry (Shlyakhter 2007). Theorem 4.2 can be seen as a
conversion of this result to a model expansion context with local domain interchangeability.

Intuitively, Theorem 4.2 states that local domain interchangeability is completely broken by
a linear number of lex-leader constraints if the set of argument positions contains at most one
argument position for each output symbol. These lex-leader constraints lex�D(σA

(d s(d))) are based
on swaps (d s(d)) of two consecutive domain elements over the chosen domain ordering. Note
that lex-leader constraints based on swaps of non-consecutive domain elements, e.g., {σA

(d0 d) |
d ∈ δ ,d 6= d0} for a fixed d0, do not have this property (Devriendt et al. 2014).

Example 4.3 (Example 3.1 continued)
Given the graph coloring problem MX(Tgc, Igcin), let A = {C|1,Color|0} and r ≺D g ≺D b.
GA
{r,g,b} is a subdomain interchangeability group of MX(Tgc, Igcin). Since A contains only one

argument position for the symbol Color, it is completely broken by

lex�D(σA
(r g))∧ lex�D(σA

(g b)) O

The finite model generation system SEM also breaks this type of symmetry completely, by
way of dynamically avoiding symmetrical decisions during search. (Zhang and Zhang 1995)
The more recent model generator KODKOD (Torlak and Jackson 2007) breaks symmetry stat-
ically by posting lex-leader constraints from Aloul et al. (2006) for global domain symmetry.
Although Torlak and Jackson (2007) do not mention any completeness result, experiments with
a pigeonhole encoding in KODKOD indicate that it uses the right set of generator symmetries to
completely break all pigeon and hole interchangeability symmetry.

5 Symmetry detection

In this section, we give two local domain symmetry detection algorithms for model expansion
problems. The first detects generators of a local domain symmetry group, the second derives
interchangeable subdomains. Both approaches work on a first-order level, avoiding the need to
ground the model expansion problem to a propositional counterpart. Both algorithms are based
on Theorem 3.16, which conditions argument position set A to be connectively closed under
decomposition theory I∗in. To find such A, one simply constructs a partition of T ∗’s argument
positions. Using a disjoint-set data structure1, the computational cost to find A is linear in the
size of T . In the following subsections, we assume a set of argument positions A satisfying the
connectedness condition is available, leaving only the concern of finding an appropriate domain
permutation π (Section 5.1) or interchangeable subdomain δ (Section 5.2).

5.1 Local domain symmetry detection

Our approach follows other symmetry detection techniques (Aloul et al. 2002; Drescher et al.
2011) by converting the symmetry detection problem to a graph automorphism detection prob-
lem. An automorphism of a graph is a permutation τ of its vertices such that each vertex pair

1 en.wikipedia.org/wiki/Disjoint-set_data_structure

10 Jo Devriendt et al.

(v,u) forms an edge iff (τ(v),τ(u)) forms an edge. If the graph is colored, then each vertex v
must have the same color as τ(v).

This existing work encodes a propositional theory into a graph, which we call the detection
graph. If the detection graph is well-constructed, its automorphism group corresponds to a sym-
metry group of the propositional theory. Tools such as SAUCY (Katebi et al. 2010) then are
employed to derive generators for the detection graph’s automorphism group, which in turn are
converted to symmetry generators for the propositional theory.

Our approach differs by not encoding a propositional theory into the detection graph, but
an input structure and a set of argument positions, as these are all we need to detect local do-
main symmetry. Formally, given a structure I and an argument position set A, we construct an
undirected colored graph whose automorphisms correspond to domain permutations π such that
σA

π (I) = I – satisfying the second condition of Theorem 3.16.

Definition 5.1 (Domain permutation graph)
Let I be a Σ-structure with domain D and A a set of argument positions. The domain permutation
graph DPG(I,A) for I and A is an undirected colored graph with labeled vertices V , edges E and
color function C that satisfies the following requirements:

V is partitioned into three subsets: DE (domain element vertices), AP (argument position ver-
tices) and IT (interpretation tuple vertices). DE contains a vertex labeled d for each d ∈ D. AP
contains k + 1 vertices labeled {d.i | i ∈ [0..k]} for each d ∈ D, with k the maximum arity of
symbols in Σ. IT contains a vertex labeled S(d̄) for each tuple d̄ ∈ SI with SI ∈ I.

E consists only of edges between DE and AP, and between AP and IT . An AP vertex labeled
d.i is connected to a DE vertex e iff d = e. An IT vertex labeled S(. . . ,di, . . .) is connected to an
AP vertex e. j iff d = e, i = j and S|i ∈ A.

Vertices from different partitions have different colors. All DE vertices have the same color.
Two AP vertices labeled d.i and e. j have the same color iff i = j. Two IT vertices labeled
S(d1, . . . ,dn) and R(e1, . . . ,en) have the same color iff S = R and di = ei for all i such that S|i 6∈ A.

The intuition behind the domain permutation graph DPG(I,A) is that a permutation of its DE
vertices corresponds to a domain permutation π , a permutation of its IT vertices corresponds to a
permutation of domain element tuples in interpretations in I, and the AP vertices and vertex col-
oring serve to link DE and IT in such a way that Definition 3.6 is preserved for automorphisms.

Theorem 5.2
Let I be a Σ-structure with domain D and A a set of argument positions. There exists a bijection
between the automorphism group of the domain permutation graph DPG(I,A) and the group of
domain permutations π such that σA

π (I) = I. This bijection maps an automorphism τ to domain
permutation π iff τ(d) = π(d) for all DE vertices (equated with domain elements) d.

Example 5.3 (Example 3.17 continued)
Using argument position set A = {Edge1|1,Edge1|2,Color|1,x1|0,y1|0,x3|0} (which is connec-
tively closed under T ∗gc) and input structure I∗gcin, the domain permutation graph DPG(I∗gcin,A) is
illustrated in Figure 5.1. The automorphism group of DPG(I∗gcin,A) corresponds to the group of
induced structure transformations σA

π such that σA
π (I
∗
gcin) = I∗gcin. As a result, its automorphism

group corresponds to a local domain symmetry group of MX(Tgc, Igcin). E.g., σA
(t u v w) corre-

sponds to an automorphism that permutes the four left-most groups of five vertices, and σA
(b g) to

an automorphism that swaps the two right-most groups of four vertices. O

On Local Domain Symmetry for Model Expansion 11

t u v w

t.2 u.2 v.2 w.2t.1 u.1 v.1 w.1

t.0 u.0 v.0 w.0 r g

b

r.2 g.2

b.2

r.1 g.1

b.1

r.0 g.0

b.0

Edge1(t,u) Edge1(u,v) Edge1(v,w) Edge1(w, t)

Fig. 1. Domain permutation graph DPG(I∗gcin,A) with A = {Edge1|1,Edge1|2,Color|1,x1|0,y1|0,x3|0}.
Each shape denotes a unique color, so vertices with the same shape have the same color.

Let k be the largest arity of a symbol in I for a domain permutation graph DPG(I,A). The size
of DE is |D|, the size of AP is (k+ 1)|D|, and the size of IT is |I|, which is O(|D|k). Thus, the
total number of nodes is O(k|D|+ |D|k). There are (k+ 1)|D| edges between DE and AP, and,
if all argument positions over some symbol S/k occur in A, then there are O(k|I|) = O(k|D|k)
edges between AP and IT . Thus, the total number of edges is O(k|D|k).

Note that the size of DPG(I,A) does not depend on the size of the theory of the model expan-
sion problem. This is a major advantage compared to automorphism-based symmetry detection
on ground theories, as the detection graph grows linearly with the ground theory (Drescher et al.
2011), which is typically much larger than the input structure.

5.2 Subdomain interchangeability detection

While the previous subsection detects local domain symmetry generators individually, it is not
clear what type of symmetry group they form. To optimally construct symmetry breaking con-
straints for symmetry groups, we need to detect subdomain interchangeability as well. Then, by
Theorem 4.2, we will often be able to break subdomain interchangeability groups completely
with a set of lex-leader constraints linear in |D|.

Given a model expansion problem MX(T , Iin) with decomposition MX(T ∗, I∗in) and a set of
argument positions A connectively closed under T ∗, the task at hand is to find a subdomain
δ ⊆D such that for each permutation π over δ , σA

π (I
∗
in) = I∗in. If so, Theorem 3.16 guarantees σA

π

to be a symmetry of MX(T , Iin), which makes δ an A-interchangeable subdomain.
The actual algorithm finds a partition ∆ of D, such that each δ ∈ ∆ is A-interchangeable. The

idea is based on the fact that the permutation group of a set is generated by swaps of two elements
of the set. As such, if we know for each pair d1,d2 ∈D whether σA

(d1 d2)
(I∗in) = I∗in, it is straightfor-

ward to construct the partition ∆. The resulting symmetry detection algorithm is simple: for each
pair of domain elements d1,d2 ∈ D, check whether σA

(d1 d2)
(I∗in) = I∗in. When using a disjoint-set

data structure1 to keep track of the partition ∆, the complexity of this algorithm is O(|D|2|I∗in|).
The algorithm can be optimized by exploiting transitivity, domain element occurrence counting
or unary symbols partitioning the domain, but this does not improve the worst-case complexity.

Example 5.4 (Example 3.17 continued)
Given argument position set A = {C1|1,Color|0} (which is connectively closed under T ∗gc), we
detect A-interchangeable domains by checking whether the (only) input symbol C1 has the same
interpretation in σA

(d1 d2)
(I∗in) as in I∗in for combinations of d1,d2 ∈ {t,u,v,w,r,g,b}. For (d1,d2)∈

12 Jo Devriendt et al.

{(t,u),(u,v),(v,w),(r,g),(g,b)} this is indeed the case. For (d1,d2) = (w,r) this is not the case,
so the A-interchangeable sets are {t,u,v,w} and {r,g,b}. O

6 Experiments

Based on the theory and algorithms presented in this paper, we implemented symmetry exploita-
tion in the model expansion inference of the IDP system (De Cat et al. 2016). IDP is a knowl-
edge base system where knowledge about a problem can be modelled in FO(·), a rich extension
of first-order logic (Denecker and Ternovska 2008). Our implementation (including source code)
is available online2, and is incorporated in IDP version 3.6.0 and up. Our implementation makes
use of SAUCY version 3 to solve the graph automorphism component of symmetry detection, and
constructs symmetry breaking formulas based on the lex-leader encoding of Aloul et al. (2006).

We compare this implementation with the ASP system CLASP (Gebser et al. 2014) version
3.1.4, using version 4.5.4 of the ASP grounder GRINGO to generate ground answer set programs.
For CLASP, the symmetry breaking preprocessor SBASS has been developed (Drescher et al.
2011). SBASS takes a ground answer set program, encodes it to a detection graph, uses SAUCY to
solve the automorphism detection problem, converts SAUCY’s output to permutations of propo-
sitional atoms that induce symmetries, and constructs symmetry breaking constraints following
Aloul et al. (2006).

Our experiment uses four different system configurations: IDP and CLASP refer to both sys-
tems without symmetry breaking, IDPSYM refers to IDP extended with the techniques described
in this paper, and SBASS refers to CLASP coupled with the symmetry breaking preprocessor.

This experiment can only broadly compare the IDP and CLASP configurations, as both systems
use similar but ultimately different techniques to solve the model expansion problem. Our main
interest is to investigate the types of symmetry detected, the overhead needed to detect those, and
the relative speedup gained when activating symmetry algorithms for both systems. We expect
that IDPSYM, compared to SBASS, has less symmetry detection overhead, as IDPSYM detects
symmetry on the first-order level instead of on the ground level. E.g., the structure information
present in a set of connectively closed argument positions can be derived with a syntactical
check on the first-order theory, but this information is lost after grounding. As a result, we expect
IDPSYM’s detection graph to be smaller, or even non-existent.3 Also, we expect a larger relative
speedup for IDPSYM than for SBASS on problems with a lot of subdomain interchangeability,
as only IDPSYM detects and completely breaks this type of symmetry. However, as mentioned
in Section 3.4, IDPSYM’s detected symmetry group might be smaller than SBASS’s, as not all
symmetry properties of a problem can be captured by our notion of local domain symmetry.

Our benchmark set consists of four problem families: pigeons, crew, graceful and 200queens.
pigeons is a set of 16 unsatisfiable pigeonhole instances where n pigeons must be placed in n−1
different holes. The pigeons and holes are indistinguishable, leading to subdomain interchange-
ability symmetry groups. crew is a set of 42 unsatisfiable airline crew scheduling instances,
where optimality has to be proven for a minimal crew assignment given a moderately complex
flight plan. The instances are generated by hand, with the number of crew members ranging

2 bitbucket.org/krr/fo-sym-experiments
3 IDPSYM does not construct the detection graph if the only generators it will detect are due to subdomain interchange-

ability. Given an argument position set A, this is the case if for each symbol S, A contains at most one argument position
over S.

On Local Domain Symmetry for Model Expansion 13

from 5 to 25. Crew members have different attributes, but depending in the instance, multiple
crew members exist with exactly the same attribute set, leading to subdomain interchangeability
symmetry. graceful consists of 60 graceful graph instances, taken from 2013’s ASP competition.
These instances require to label a graph’s vertices and edges such that all vertices have a different
label, all edges have a different label, and each edge’s label is the difference of the labels of the
vertices it connects. The labels used are {0,1, . . . ,n}, with n the number of edges. Any symmetry
exhibited by the input graph is present, as well as a symmetry mapping each vertex’ label l to
n− l. 200queens is one N-Queens instance trying to fit 200 queens on a 200 by 200 chessboard
so that no queen threatens another. The symmetry present in 200queens is due to the rotational
and reflective symmetries of the chessboard.

The available resources were 6GB RAM and 1000s timeout on an Intel R© Xeon R© E3-1225
CPU with Ubuntu 14.04 Linux kernel 3.13 as operating system. FO(·) and ASP specifications,
instances and detailed experimental results are available online.2 Table 1 summarizes the results.

CLASP SBASS IDP IDPSYM

t V π # # t V π δ

pigeons (16) 8 11 50.9 48814 43.5 8 16 0.0 0 3 0 2
crew (42) 32 36 0.0 1722 7.8 28 39 0.0 0 3 0 4.1
graceful (60) 33 20 0.7 127860 5.5 26 13 0.4 15201 5.4 0.6
200queens (1) 1 1 76.2 9357802 2 1 1 6.8 0 3 0 0

Table 1. Experimental results of CLASP- and IDP-based solvers with and without symmetry
breaking. # represents the number of solved instances, t the average symmetry detection time in
seconds, V the average number of vertices in the detection graph, π the average number of sym-
metry generators detected by SAUCY, and δ the average number of interchangeable subdomains
detected.

When analyzing the results on pigeons, it is clear that plain CLASP and IDP get lost in sym-
metric parts of the search tree, solving only 8 instances (up to 12 pigeons). SBASS can only
solve three more instances (up to 15 pigeons), as the derived symmetry generators do not suffice
to construct strong symmetry breaking constraints. These results are consistent with Drescher
et al. (2011). IDPSYM detects the pigeon and hole interchangeable subdomains, and its com-
plete symmetry breaking constraints allow all 16 instances to be solved (up to 100 pigeons). As
far as symmetry detection time goes, unlike SBASS, IDPSYM has negligible detection overhead.

The results on crew are similar to pigeons but less outspoken. The reason is that even though
there are more subdomain interchangeability groups, the subdomains are a lot smaller, incurring
less symmetry overhead. As a result, IDPSYM only enjoys a small advantage over SBASS, but
does reverse the situation where pure CLASP outperforms pure IDP. Concerning symmetry de-
tection, IDPSYM has to analyze the input structure before deriving any subdomain interchange-
ability groups, which contrasts with the trivially interchangeable pigeons and holes in pigeons.
Nonetheless, IDPSYM solves this task in the blink of an eye, as does SBASS.

Continuing with graceful, it is striking that the number of solved instances is reduced by
symmetry breaking. Upon closer inspection, this is only the case for satisfiable instances. For
unsatisfiable graceful instances, SBASS solves two more than CLASP, and IDPSYM solves three
more than IDP. This discrepancy is not uncommon, as static symmetry breaking reduces the
search space by removing possibly easy-to-find solutions. These results are also consistent with
those reported by Drescher et al. (2011). Looking at the number of symmetry generators detected,

14 Jo Devriendt et al.

both SBASS and IDPSYM detect about the same number of symmetry generators, indicating
that they detect the same symmetry group. Note that IDPSYM also detects a few subdomain
interchangeability groups, apparently present in the input graph. As far as symmetry detection
overhead goes, SBASS is slower than IDPSYM. This is not surprising, as SBASS’ detection graph
is almost an order of magnitude larger than IDPSYM’s. We conclude that for graceful, IDPSYM

detects the same symmetry group as SBASS, though with less overhead.
Lastly, for 200queens, IDPSYM cannot detect the geometric symmetries of the chessboard, as

this type of symmetry does not fit the definition of local domain symmetry. For instance, a square
(i, j) on the chess board is diagonally reflected to square (j, i), while square (i,k) is reflected to
(k, i). Domain element i is mapped to both j and k at position 0, violating the local domain
symmetry requirement that it stems from a domain permutation. SBASS can detect this type of
symmetry, as it detects permutations of ground atoms instead of domain elements. However, note
the significant overhead incurred, as the detection graph is huge.

We conclude that our approach has very low symmetry detection overhead, due to a smaller or
non-existent detection graph. Moreover, by completely breaking subdomain interchangeability,
we significantly increase the number of solved instances. However, not all symmetry present in
the problem set is detected by our approach.

7 Conclusion

We presented the notion of local domain symmetry for model expansion problems, which man-
ifests itself on the first-order level. We gave a completeness result on the strength of symmetry
breaking constraints for a special case of local domain symmetry, and we posted syntactical
conditions to efficiently detect symmetry from a model expansion specification. Our experiment
highlights the strengths and weaknesses of our approach. We have a very low symmetry detection
overhead and we give symmetry breaking completeness guarantees for local domain interchange-
ability that are effective in practice. However, we cannot detect some forms of symmetry.

It is worth mentioning that local domain symmetry is not limited to pure classical logic; it is
straightforward to extend our work to cardinalities, types or arithmetic. Similarly, logic programs
under stable or well-founded semantics have symmetry properties induced by permutations of
domain elements (or Herbrand constants) and sets of argument positions. Our work easily trans-
fers to these domains. In fact, our implementation in IDP already supports such extensions.

Investigating which types of symmetry fall outside our formalism, and inventing ways to detect
and exploit these types of symmetry is interesting future work. One idea is that not only permu-
tations of the domain lead to symmetry, but permutations on (argument positions of) symbols
in the vocabulary do as well. We suspect there is also room for improvement on the symmetry
breaking front. Limiting the size of individual symmetry breaking constraints is known to im-
prove their performance. Also, to avoid deteriorating performance on satisfiable instances, one
should look into dynamic symmetry breaking approaches, as these typically do not cut away
solutions a priori.

8 Acknowledgements

This research was supported by the project GOA 13/010 Research Fund KU Leuven and projects
G.0489.10, G.0357.12 and G.0922.13 of FWO (Research Foundation - Flanders). Bart Bogaerts

On Local Domain Symmetry for Model Expansion 15

is supported by the Finnish Center of Excellence in Computational Inference Research (COIN)
funded by the Academy of Finland (grant #251170).

References

ALOUL, F., RAMANI, A., MARKOV, I., AND SAKALLAH, K. 2002. Solving difficult SAT instances in the
presence of symmetry. In Design Automation Conference, 2002. Proceedings. 39th. 731–736.

ALOUL, F. A., SAKALLAH, K. A., AND MARKOV, I. L. 2006. Efficient symmetry breaking for Boolean
satisfiability. IEEE Transactions on Computers 55, 5, 549–558.

AUDEMARD, G. AND BENHAMOU, B. 2002. Reasoning by symmetry and function ordering in finite
model generation. In Automated Deduction - CADE-18, 18th International Conference on Automated
Deduction, Copenhagen, Denmark, July 27-30, 2002, Proceedings, A. Voronkov, Ed. Lecture Notes in
Computer Science, vol. 2392. Springer, 226–240.

CLAESSEN, K. AND SÖRENSSON, N. 2003. New Techniques that Improve MACE-style Model Finding.
In Workshop on Model Computation (MODEL).

DE CAT, B., BOGAERTS, B., BRUYNOOGHE, M., JANSSENS, G., AND DENECKER, M. 2016. Predicate
logic as a modelling language: The IDP system. CoRR abs/1401.6312v2.

DENECKER, M. AND TERNOVSKA, E. 2008. A logic of nonmonotone inductive definitions. ACM Trans.
Comput. Log. 9, 2 (Apr.), 14:1–14:52.

DEVRIENDT, J., BOGAERTS, B., AND BRUYNOOGHE, M. 2014. BreakIDGlucose: On the importance of
row symmetry in SAT. In Proceedings of the Fourth International Workshop on the Cross-Fertilization
Between CSP and SAT (CSPSAT).

DRESCHER, C., TIFREA, O., AND WALSH, T. 2011. Symmetry-breaking answer set solving. IA Commu-
nications 24, 2, 177–194.

ENDERTON, H. B. 2001. A Mathematical Introduction To Logic, Second ed. Academic Press.
FLENER, P., FRISCH, A. M., HNICH, B., KIZILTAN, Z., MIGUEL, I., PEARSON, J., AND WALSH, T.

2002. Breaking row and column symmetries in matrix models. In Principles and Practice of Constraint
Programming - CP 2002, P. Hentenryck, Ed. LNCS, vol. 2470. Springer Berlin Heidelberg, 462–477.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., AND SCHAUB, T. 2014. Clingo = ASP + control: Prelim-
inary report. In Technical Communications of the Thirtieth International Conference on Logic Program-
ming (ICLP’14), M. Leuschel and T. Schrijvers, Eds. Vol. 14(4-5). Online Supplement.

GENT, I. P., PETRIE, K. E., AND PUGET, J.-F. 2006. Symmetry in constraint programming. Handbook of
Constraint Programming 10, 329–376.

KATEBI, H., SAKALLAH, K. A., AND MARKOV, I. L. 2010. Symmetry and satisfiability: An update. In
SAT, O. Strichman and S. Szeider, Eds. LNCS, vol. 6175. Springer, 113–127.

SAKALLAH, K. A. 2009. Symmetry and Satisfiability. Frontiers in Artificial Intelligence and Applications,
vol. 185. IOS Press, Chapter 10, 289–338.

SHLYAKHTER, I. 2007. Generating effective symmetry-breaking predicates for search problems. Discrete
Appl. Math. 155, 12 (June), 1539–1548.

TORLAK, E. AND JACKSON, D. 2007. Kodkod: A relational model finder. In TACAS, O. Grumberg and
M. Huth, Eds. LNCS, vol. 4424. Springer, 632–647.

WALSH, T. 2012. Symmetry breaking constraints: Recent results. CoRR abs/1204.3348.
ZHANG, J. AND ZHANG, H. 1995. Sem: A system for enumerating models. In Department of Philosophy

University of Wisconsin-Madison Mathematics and Computer Science. 298–303.

16 Jo Devriendt et al.

Appendix A Proofs

Theorem 3.10
Let Σ be a vocabulary, T a theory over Σ, π a domain permutation and A a set of argument
positions. If A is connectively closed under T , then σA

π is a local domain symmetry of T .

Proof
To prove this theorem, we prove the following consecutive claims for each Σ-structure I. Without
loss of generalization, we assume I interprets the neccessary variables.

1. For each term f (t) that occurs in T , it holds that f (t)σA
π (I) =

{
π(f (t)I) if f |0 ∈ A
f (t)I otherwise

2. For each atom a of the form P(t1, . . . , tn) or of the form t1 = t2 that occurs in T , it holds
that aσA

π (I) = aI .
3. For each formula ϕ that occurs in T , ϕσA

π (I) = ϕ I .

The first claim is proven by induction on the subterm relation. The induction step follows from
the fact that A is connectively closed. The second claim follows from the first, also using the
fact that A is connectively closed. Consider for instance the case of atom f (t) = g(t ′) occurring
in T , with f |0 ∈ A. Then g|0 ∈ A (since A is connectively closed), so f (t)σA

π (I) = g(t ′)σA
π (I) iff

π(f (t)I) = π(g(t ′)I) iff f (t)I = g(t ′)I (since π is a permutation). The other cases are analogous.
The last claim follows by induction on the subformula relation since the value of a first-order

formula is entirely determined by the value of the atoms occuring in it. Consider for instance
the case of formula ∃x : ϕ occurring in T with x|0 ∈ A. (∃x : ϕ)I holds iff there exists a d ∈ D
such that ϕ I[x:d] holds. By the induction hypothesis, ϕ I[x:d] = ϕσA

π (I[x:d]) = ϕσA
π (I)[x:π(d)] (since

x|0 ∈ A). (∃x : ϕ)σA
π (I) holds iff there exists a d′ ∈ D such that ϕσA

π (I)[x:d′] holds. Without loss of
generalization, let d′ = π(d), then (∃x : ϕ)I = (∃x : ϕ)σA

π (I). The other cases are analogous.

Theorem 3.16
Let MX(T , Iin) be a model expansion problem with decomposition MX(T ∗, I∗in). If A is connec-
tively closed under T ∗ and σA

π (I
∗
in) = I∗in then σA

π is a symmetry for MX(T , Iin).

Proof
Since MX(T , Iin) and MX(T ∗, I∗in) have the same set of solutions, it suffices to prove that σA

π is
a symmetry of MX(T ∗, I∗in). Firstly, due to the connectively closed condition, σA

π is a symmetry
of T ∗, so I∗int Iout |= T ∗ iff σA

π (I
∗
int Iout) |= T ∗. Secondly, since σA

π (I
∗
in) = I∗in, I∗int Iout |= T ∗ iff

I∗intσA
π (Iout) |= T ∗, so σA

π is a symmetry for MX(T ∗, I∗in).

Theorem 4.2
Let MX(T , Iin) be a model expansion problem, δ an A-interchangeable subdomain, �D a total
order on domain D and s(d) the successor of d in δ according to �D. If A contains at most one
argument position S|i for each symbol S ∈ Σout , then the conjunction of lex-leader constraints

{lex�D(σA
(d s(d))) | d ∈ δ}

is a complete symmetry breaking constraint for the subdomain interchangeability group GA
δ

.

Proof
To prove this theorem, we (1) convert the task of finding a solution to a model expansion prob-
lem to a constraint programming problem, where an assignment over a set of Boolean variables

On Local Domain Symmetry for Model Expansion 17

V has to be found. Further, we show that (2) a subset of these Boolean variables can be orga-
nized as a matrix Mδ , where each permutation over the rows of Mδ corresponds to a permu-
tation over δ . The interchangeability group GA

δ
then corresponds to a row interchangeability

symmetry group induced by permuting Mδ ’s rows. Using a result from constraint programming,
such row interchangeability symmetry groups are broken completely by posting a lex-leader
constraint (based on the appropriate row ordering) for each symmetry induced by the swap of
two consecutive rows (Flener et al. 2002; Devriendt et al. 2014). This corresponds to posting
{lex�D(σA

(d s(d))) | d ∈ δ}, ending the proof.
(1) Given a vocabulary Σout and a domain D, finding a Σout -structure consists of deciding for

each d̄ ∈ Dn whether d̄ ∈ SIout for each symbol S/n ∈ Σout . Hence, a model expansion prob-
lem MX(T , Iin) can be seen as finding an assignment to a set of Boolean variables V = {S(d̄) |
S/n ∈ Σout , d̄ ∈ Dn} such that Iin t Iout |= T . A local domain symmetry σA

π for MX(T , Iin) now
corresponds to a variable symmetry (Flener et al. 2002) mapping

S(d1, . . . ,dn) to S(τS|1(d1), . . . ,τS|n(dn))

where τS|i(d) = π(d) if S|i ∈ A and τS|i(d) = d otherwise.
(2) The variables in V that are not fixed by some σA

π ∈ GA
δ

are those S(. . . ,d j−1,δi,d j+1, . . .)

where δi ∈ δ is the jth domain element of an S-tuple with S| j ∈ A. We can partition this subset
into “rows” Rδi = {S(. . . ,d j−1,δi,d j+1, . . .) | S| j ∈ A,dk ∈ D} where δi is fixed. It is clear that
σA

π (Rδi) = Rπ(δi), so a permutation of the set of rows corresponds to a symmetry of GA
δ

. Since A
contains at most one argument position for each S ∈ Σout , these rows are pairwise disjoint, and
under some column organization form the requested matrix Mδ .

Theorem 5.2
Let I be a Σ-structure with domain D and A a set of argument positions.

There exists a bijection between the automorphism group of the domain permutation graph
DPG(I,A) and the group of domain permutations π such that σA

π (I) = I. This bijection maps
an automorphism τ to domain permutation π iff τ(d) = π(d) for all DE vertices (equated with
domain elements) d.

Proof
We prove the bijection by showing that all induced structure transformations σA

π with σA
π (Iin) =

Iin correspond to an automorphism of DPG(Iin,A) (⇒) and vice versa (⇐).
First, some preliminaries. For a given symbol S, let each tuple (d1, . . . ,dn) ∈ SIin be split as

two tuples d+
A d−A such that d+

A = {di | S|i ∈ A} and d−A = {di | S|i 6∈ A}. Let π naturally extend
to tuples: π((d1, . . . ,dn)) = (π(d1), . . . ,π(dn)). The symmetrical interpretation σA

π (Iin) can then
be described as {π(d+

A)d−A | d
+
A d−A ∈ SIin}, so σA

π (Iin) = Iin iff for all symbols S, d+
A d−A ∈ SIin

iff π(d+
A)d−A ∈ SIin . Also, without loss of generalization, let an IT vertex’s label be S(d+

A d−A) for
symbol S. Lastly, (v,w) ∈ E denotes that graph E has an (undirected) edge between vertices v
and w.

(⇒) If σA
π (Iin) = Iin, σA

π corresponds to a permutation α of the vertices of DPG(Iin,A): α(d) =
π(d) (for DE vertices), α(d.i) = π(d).i (for AP vertices), α(S(d+

A d−A)) = S(π(d+
A)d−A) (for IT

vertices). We show that α is an automorphism of DPG(Iin,A).
By the definition of DPG(Iin,A), α preserves the colors. To show that α preserves the edges,

we need to show that (v,w) ∈ DPG(Iin,A) iff (v,w) ∈ α(DPG(Iin,A)). Firstly, remark that α

maps each vertex in a layer to another vertex in that layer, so we only need to check whether the
edges between (1) DE-AP and (2) AP-IT are conserved.

18 Jo Devriendt et al.

(1) The following statements are equivalent

(α(d),α(e.i)) ∈ α(DPG(Iin,A))

(d,e.i) ∈ DPG(Iin,A) (α is a permutation of vertices)

d = e (definition of domain permutation graph)

π(d) = π(e) (π is a permutation)

(π(d),π(e).i) ∈ DPG(Iin,A) (definition of domain permutation graph)

(α(d),α(e.i)) ∈ DPG(Iin,A) (definition of α)

(2) Similarly, the following statements are equivalent

(α(d.i),α(S(d+
A d−A)) ∈ α(DPG(Iin,A))

(d.i,S(d+
A d−A)) ∈ DPG(Iin,A) (α is a permutation of vertices)

di ∈ d+
A (definition of domain permutation graph)

π(di) ∈ π(d+
A) (π is a permutation)

(π(d).i,S(π(d+
A)d−A)) ∈ DPG(Iin,A) (definition of domain permutation graph)

(α(d.i),α(S(d+
A d−A)) ∈ DPG(Iin,A) (definition of α)

(⇐) We must show that an automorphism α of DPG(Iin,A) corresponds to an A,π-induced
structure transformation σA

π such that σA
π (Iin) = Iin.

Notice that, since α is an automorphism of a three-layered graph with different colors for each
layer DE, AP and IT, we can write it as a composition of three permutations αDE ◦αAP ◦αIT .
As there exists a bijection between DE and the domain D of Iin, we assume αDE w π , with π a
permutation of D.

We now show that (1) α(d.i) = π(d).i and (2) α(S(d+
A d−A)) = S(π(d+

A)d−A). From this, it
follows that α represents a structure transformation σA

π mapping tuples d+
A d−A to π(d+

A)d−A , and
hence, σA

π (Iin) = Iin.
(1) Since d.i and e. j have the same color iff i = j, α(d.i) = e.i for some domain element e. As

each vertex d.i is connected to exactly one vertex d, α(d.i) = π(d).i.
(2) Since S(d+

A d−A) and R(e+A e−A) have the same color iff S = R and d−A = e−A , α(S(d+
A d−A)) =

S(e+A d−A) for some tuple domain elements e. All that is left to show is that e+A = π(d+
A). For this,

note that S(d+
A d−A) is connected only to d.i for each d on index i in d+

A . As α is an automorphism
that maps d.i to π(d).i, α(S(d+

A d−A) must be connected only to all π(d).i. The only vertex doing
so (taking colors into account) is S(π(d+

A)d−A).

