Experimental Evaluation of a State-Of-The-Art Grounder

Joachim Jansen

KU Leuven Department of Computer
Science
Celestijnenlaan 200A
3001 Heverlee, Belgi¢

joachim.jansen@cs.kuleuven.be

Ingmar Dasseville

KU Leuven Department of Computer
Science
Celestijnenlaan 200A
3001 Heverlee, Belgi¢

ingmar.dasseville@cs.kuleuven.be

Jo Devriendt

KU Leuven Department of Computer
Science
Celestijnenlaan 200A
3001 Heverlee, Belgi¢

jo.devriendt@cs.kuleuven.be

Gerda Janssens

KU Leuven Department of Computer Science
Celestijnenlaan 200A
3001 Heverlee, Belgi¢

gerda.janssens@cs.kuleuven.be

Abstract

Many state-of-the-art declarative systems use a ground-and-solve
approach, where the problem statement, expressed in a high-level
language, is first grounded into a low-level representation. Next,
a solver is used to search a solution for the low-level representa-
tion. In order to prevent a combinatorial blowup of the ground-
ing, many intelligent techniques have been developed. In this paper
we study in detail three such techniques (Lifted Unit Propagation,
Grounding With Bounds, and Reduced Grounding) to get a better
insight in their individual merits and their interactions. Our experi-
ments take as benchmarks all the NP problems of the previous An-
swer Set Programming (ASP) competitions. The experiments are
performed with IDP® and all tools needed to run them are made
publicly available. The first experiment discusses the impact of the
three techniques on the “efficiency” of the grounding step, and on
each other. In a second set of experiments we show that a reduc-
tion in the grounding size as a result of the application of these
grounding techniques does not reduce the search space. We give an
in-depth analysis of our results and discuss what this means for the
development of grounding techniques for declarative systems.

1. Introduction

Model generation is a widely used problem-solving paradigm. A
problem is specified as a theory in a rich, declarative logic in such
a way that models of the theory represent solutions to the prob-
lem. In this paper we focus on bounded Model Expansion (MX),
where a partial input structure interpreting a finite, known do-
main is expanded into a total structure that satisfies a given theory.
This paradigm is studied in fields such as Constraint Programming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

PPDP ’14, September 8-10, 2014, Canterbury, UK.

Copyright © 2014 ACM 978-1-4503-2947-7/14/09. . . $15.00.
http://dx.doi.org/10.1145/

(CP), Mixed Integer Programming (MIP), Answer Set Program-
ming (ASP), and Knowledge Representation (KR).

A state-of-the-art approach is to reduce the input theory, for-
mulated in an expressive logic, to a theory in a fragment of the
language supported by some search algorithm, while preserving a
suitable form of equivalence. Afterwards, the search algorithm is
applied to effectively search for models of the theory. We refer to
the former reduction process as grounding and the latter as search.
Abusing notation, we use ‘grounding’ to also refer to the outcome
of the reduction process, the ground theory. This two-phase ap-
proach is commonly called ground-and-solve. Example systems us-
ing this approach are MiniZinc systems [16] which ground MiniZ-
inc to FlatZinc, ASP systems such as Clingo [12], DLV [15], or
SMODELS [17] which ground ASP programs, and IDP? [3, 5]
which grounds FO(-)™ to ECNF.

As we will later argue, the main challenge of the grounding
phase is to transform away quantified variables. This can be done
naively by instantiating universally (existentially) quantified vari-
ables for all their possible values and concatenating the results into
one large conjunction (disjunction). If done in this manner, the
ground size of a formula ¢ is of the order D™ where D is the size
of the domain and n the number of quantifiers in . This potential
combinatorial blowup is a challenge for ground-and-solve based
declarative systems. Most ASP systems approach this challenge by
using semi-naive bottom-up evaluation [10, 11], a technique based
on semi-naive evaluation in the field of databases [2]. IDP3, the
system studied in the experiments for this paper, uses a top-down
approach for grounding.

The contributions of this paper are the following. First, it pro-
vides an introduction to three important grounding techniques.
These techniques have been introduced in other papers, this paper
aims to provide an intuitive explanation of these techniques, to dis-
cuss the impact they have on each other, and to help future develop-
ers with information about the implementation of these techniques.
Further, we confirm claims on the effects of these techniques with
an empirical analysis of the three mentioned grounding techniques,
and combinations of them. The third and major contribution is the
empirical analysis of the effect that a smaller grounding has on
the subsequent solving phase of declarative systems. We show, us-
ing a rigorous statistical analysis on the performed experiments,
that a reduction in the grounding size as a result of the applica-

tion of grounding techniques does not reduce the search space
for solvers. For this analysis we do not have to take into account
how the grounding size was reduced. We simply observe the effect
of a smaller grounding, broadening this result to other ground-
and-solve systems which employ grounding techniques aimed at
reducing the grounding size in a similar way.

This paper is organized as follows. Section 2 offers some back-
ground of the IDP? system and its language FO(-)™. Section 3
introduces the three grounding techniques which we will investi-
gate. The first set of experiments determining the effect of these
techniques on the efficiency of the grounding step is presented in
Section 4. Next, Section 5 shows an analysis of our second set of
experiments. These investigate the effect of a smaller grounding on
the solving process. We conclude in Section 6.

2. Preliminaries

Several recent proposals for declarative modelling and problem
solving use first-order logic (FO) as a base language and support
some extension of it. Examples are Enfragmo [1] and the IDP?, the
current version of the IDP Knowledge Base System [6]. IDP® sup-
ports the language FO(-)™, which extends FO with inductive defi-
nitions, (partial) functions, types, and aggregates. As argued in [7],
the ASP language shows a strong overlap with FO(-)™ to the ex-
tent that ASP systems could be used as FO(-)™ solvers. IDP? uses
logical operations called inferences to solve problems. Amongst
others, IDP3 supports the bounded model expansion inference [5].

IDP%’s inferences take FO(-)™ specifications as input. For
model expansion, these specifications represent three logical ob-
jects: a vocabulary, a theory and a structure. A vocabulary is a set
of type symbols, predicate symbols, and function symbols. In this
paper, P, Q, R denote predicate symbols, and F', G, H denote
function symbols. Without loss of generality, we assume only one
domain D. A theory is a conjunction of FO sentences and inductive
definitions. A logical sentence is a logical formula where all vari-
ables are quantified. We use ¢, 1, 7 to denote logical formulas. We
assume every variable is quantified over D, and if not, we specify
that a variable is quantified over D’ by stating Vx € D’ : ¢. A
term t in a logical formula is either a variable or a function symbol
applied to a tuple of terms. We use T to denote a tuple of variables,
% a tuple of terms, d a tuple of domain elements, and D a cartesian
product of D. An inductive definition is a set of rules of the form
VT : P(t) < ¢, where ¢ is an FO formula and the free variables of
o and P(t) are among T. We call P(t) the head of the rule and
the body. The connective < is the definitional implication, which
should not be confused with the material implication =. Thus, the
expression VT : P(t) < ¢ is not a shorthand for Vz : P(t) V —p.
Instead, its meaning is given by the well-founded semantics. The
well-founded semantics correctly formalizes definitions that typi-
cally occur in mathematical texts [8, 9].

A domain atom is an expression of the form P(d) or of the
form F(d) = d'. A structure I over a vocabulary X is a partial
interpretation of the symbols in 3. If P is a symbol in 3, P’
denotes the interpretation of P in I. As such, structures assign
a truth value true (t), false (f) or unknown (u) to every domain
atom P(d), signifying respectively whether d € P’, d ¢ P',
or it is unknown whether d € P’. A structure which assigns at
least one domain atom to u is three-valued, otherwise it is two-
valued. A structure I is a model for a given theory T over a
vocabulary ¥ if I is two-valued and I satisfies 7. A structure [
satisfies a theory 7 if each sentence in the theory evaluates to true
under classical first order semantics, and each inductive definition
in the theory holds under the well-founded semantics. We denote
the satisfaction relation by I |= 7. A structure I’ refines I, denoted

as I <, I, iff for each domain atom P(d), d € P = d ¢ pr

andd ¢ Pl = d ¢ P, Given a vocabulary ¥, a theory T
and a structure 7, the model expansion inference of IDP? outputs
a structure I’ that both refines I and is a model for T, or it decides
that no such structure exists.

As stated before, IDP? uses a ground-and-solve approach to
implement its model expansion inference. In the grounding step,
the input FO(-)™ specification is grounded to a propositional
theory in Extended Conjunctive Normal Form (ECNF), which is
the input language of MINISAT(ID), IDP>’s search engine. At its
core, an ECNF theory is a conjunction of propositional clauses, a
CNF. Thus, IDP?’s grounding algorithms are required to transform
first order logic sentences, occurring in an FO(:)™ theory, to
clauses, contained in an ECNF theory.

This conversion in turn has two core elements: instantiating
quantifiers, and flattening nested propositional formulas. For ex-
ample, given a sentence

¢ =3z : P(z)AQ(x)
with 2’s domain being {d1, d2}, then ¢’s instantiation would be
inst(¢) = (P(d1) A Q(d1)) V (P(d2) A Q(d2))

To turn inst(¢) into clauses, we would need to flatten it. This
can efficiently done by introducing helper predicates called zseitin
literals [18]:

flat(inst(¢)) =(L(d1) V L(d2))
A (L(d1) < P(d1) A Q(dy))
A (L(d2) < P(d2) A Q(d2))

Now, turning the <>-formulas into clauses using a standard trans-
formation results in a grounded version of ¢:

Flat(inst(¢))" =(L(d1) V L(d2))

A (L(d2) V =P(d2) V =Q(d2))

This grounding process assumes a set of normalized first order
logic sentences as input. Normalizing a sentence consists of unnest-
ing function symbols by introducing existential quantifiers, trans-
forming function symbols to their graph predicate, pushing quanti-
fiers inwards, and pushing negations through quantifiers.

Inductive definitions occurring in FO(-) specifications are ea-
gerly evaluated, since often, truth values for ground atoms in heads
can be derived using a tabled logic programming system such as
XSB [13, 14]. Further techniques for grounding definitions are
considered out of scope for this paper and the remainder of the
paper will focus on grounding formulas.

Finally, IDP? and its language FO(-)™ support more con-
straints than only first order sentences and inductive definitions:
sum constraints, product constraints and cardinality constraints are
the most noteworthy. Recent work [4] on MINISAT(ID) added
support for grounded versions of these constraints, and the ECNF
language specification has since been extended. For the sake of
clarity we also ignore these extra features in the remainder of this
paper.

So to summarize, we assume the grounding task consists of
transforming a structure and a theory containing only first order
sentences, to a conjunction of clauses called the ground theory or
grounding. The first order sentences are normalized, but not yet
instantiated or flattened.

-t - | -f -t
pVt —t| pNf - f
VEeD:t > t|3IceD:t »->t
VZeD:f > f|IEeD:f »—>f

Figure 1. Some simplification rules

To control the complexity of this task, IDP? uses the follow-
ing three grounding optimization techniques: Reduced Grounding
(RED) [4], Lifted Unit Propagation (LUP) [21], and Grounding
With Bounds (GWB) [22]. Together, these technique provide three
advantages. They refine the input structure I, reduce the size of the
resulting ground theory, and reduce the time needed to ground. In
the next section, these techniques are studied in more detail.

During this paper, the concept of the size of a ground theory
is needed. We define the size of a ground theory as the number
of ground atoms occurring in the ground theory. Since we assume
our ground theory to be a conjunctions of clauses, the size of the
theory is the sum of the size of each clause. For instance, the size
of flat(inst(¢)) is 16.

3. Overview of Grounding Techniques

In this section we explain on a high level the three mentioned
grounding techniques RED, LUP, and GWB. The aim of this
section is to give the reader an intuition as to what these techniques
achieve and the impact they have on eachother. Each of these
techniques has been described in detail in other publications and
references are provided.

3.1 Reduced Grounding

The intuition for the Reduced Grounding (RED) technique is that
(sub)formulas of which we know the truth value beforehand don’t
have to be grounded and can be substituted with their truth value.
Whenever the top-down grounder enters a leaf containing an atom
whose truth value is known, that value is filled in. We call this an
evaluation; known domain atoms are substituted with their truth
value. Additionally, when a formula has a subformula whose truth
value is known, this truth value is propagated, for this formula. E.g.
if one of the disjuncts in a disjunction is true, that entire disjunction
is true as well. We call this a simplification [4]. Some of the rules
used in simplifications are shown in Figure 1. Note that RED can
only start working after a leaf of the top-down grounding process
has been evaluated.

Example Consider the formula
Jz: P(x) VVy (2, y) ¢))

with D = {1,2, 3}, and assume [contains the information that
P(1) is true. Since there are two quantified variables, the naive
grounding has a size of order D?. Using the above technique we
show how the grounding can be simplified to the atom t.

Formula (1) is grounded by iterating over the domain of the
quantified variable, instantiating it, and grounding the subformula.
In order to improve memory usage, we use a depth-first approach,
which means the first instantiation for = has to be ground before
more instantiations for x are considered for grounding. Assume
we start by instantiating = with 1, which means the grounder will
continue by grounding the first (instantiated) disjunct in (2).

(P()VVy :(L,y)) v Iz € D\{1}: P(x) VVy: ¢(z,y) 2)

Now the grounder encounters (3) and grounds it by grounding each
of the disjuncts, the order of which is not specified.

P()vVy:y((l,y) 3)

FCT < t
FC/T(:E) < FCT
Qor(z) < Fer(x) A Per(x)
Fer(z) <« Por(x)
Fa(z) + Qor(z)

Figure 2. Example of a symbolic representation for formula (6)

Assume we start by grounding the first disjunct, the atom P(1).
We know the truth value of this atom evaluate it to t, leading to the
following formula.

tVVy:y(l,y))
The simplification rule ¢ V t » t is applicable and the grounder
simplifies the entire disjunction to t. This is returned as the result
for the first disjunct in formula (2), leading to formula (5). Follow-
ing the same simplification rule, this entire formula can again be
simplified to t.

tVv 3z € D\{1}: P(z) VVy: Y(z,y) (5)

Note that we assumed we were “lucky” enough to first instantiate
with 1 in formula (1) and to select the first disjunct when grounding
formula (3). There is however no guarantee that this happens and
an alternative run of the grounder could end up grounding Vy :
Y(z,y) first, before finding out simplifications can be made. This
shows the unpredictable nature of the benefits of this approach.

A note on implementation Reduced grounding is the most
straightforward optimization for the grounding. Given that the im-
plementation of this technique is essentially the application of a
variety of substitution rules, implementing it is considered to be no
great challenge. Compared to the other two techniques which we
will discuss, it is fair to say that this one is the easiest to implement.

3.2 Lifted Unit Propagation

Lifted unit propagation (LUP) is a technique that aims to refine
the input structure / without losing any models. This is done by
creating a symbolic representation of the theory 7 containing the
truth dependencies between formulas in 7. More specifically, the
symbolic representation expresses for each formula when it can be
derived to be certainly true (CT) or certainly false (CF), depending
on the CT or CF information about its sub- or superformulas. An
example of this is that if a disjunction is known to be CF, each of
disjuncts has to be CF as well. Using the symbolic representation,
we query for all domain atoms which instances can be derived to
be CT or CF. This information is then used to created the refined
structure I”.

Example Consider the theory containing formula £’ shown in (6)
with D = {1,2,3}, and assume I contains the information that
P(1) is true.

Ve e D: P(z) = Q(z) (6)
We give part of the symbolic representation as a definition in

Figure 2 for this theory and use F'(z), shown in (7) to denote the
subformula of F'.

P(z) = Q(x) @)
We show that by using it, we can derive that Q(1) is true.

Since F'is a top-level formula it has to be true in order to satisfy
the theory. This is expressed in the first rule. The second rule shows
that if the universally quantified F' is true, it has to be true for each
instance in the subformula " as well. The third rule expresses that
when it is known that F’(z) is true and P(z) is true, formula (7)
forces that Q(z) is true as well. Because P(1) is known to be true

in I, and all F’(x) are true because F is a top-level formula, Q(1)
will be returned when the symbolic representation is queried for
values for which it is known that Q(x) is true. Q(1) is then inserted
into I’, leading to a strictly more refined structure than I.

When applying this technique without any of the two other tech-
niques, the resulting grounding will not change, since the informa-
tion present in I’ is not exploited in the grounding process. The
benefit of this technique lies in the additional information provided
in I’ that can be exploited by other grounding technques that use
information present in the structure, such as RED.

A note on implementation This technique works for any sym-
bolic representation of the theory. In this paper we use the im-
plementation suggested by Wittocx et al. [20] which is based on
Binary Decision Diagrams (BDDs). However, as is mentioned by
Wittocx et al., a “complete” symbolic representation of the theory
can be very complex and the associated calculation computation-
ally expensive. Because of this, we work with an approximative
implementation that places limitations on the complexity of the
symbolic representation of the theory. More specifically, the BDDs
that are used are limited in the length of their branches and when a
BDD becomes too big, it is pruned.

3.3 Grounding With Bounds

Ground With Bounds [22] (GWB) is a technique that detects when
formulas are already true or false before grounding them. Recall in
our example we showed that the benifits of RED depend greatly on
the order in which formulas are grounded, since it needs to evaluate
a domain term in a leaf of the grounding tree before being able to
propagate (simplify) this information upwards. In contrast to this,
GWRB tries to detect propagations that RED can do before arriving
at these leaf atoms. This allows GWB to offer the benefits of RED
without depending on the order of grounding.

GWB uses a closely related symbolic representation of the
theory used in LUP. The only difference is that it does not contain
rules deriving that top-level formulas are true by default, such as
the first rule in Figure 2. Using this symbolic representation, we
can query each formula for instances that are known to be CF
or CT. Instances of a formula that are known to be false (true)
are called the CF (CT) bound for this formula, hence the name
grounding with bounds. Formally, a bound for a formula is a set
of assignments to the free variables in that formula that makes its
interpretation true (for a CT bound) or false (for a CF bound). If
the set of assignments bound contains is larger, this bound is more
precise and we denote it as a tighter bound on the formula. These
bounds are used to limit which subformulas as well as instances
for quantified variables are considered for grounding. When GWB
is used in the workflow, it will reduce the number of subformulas
that need to be grounded. For a conjunction this is the number of
conjuncts, for a quantifier this is the instances of the quantified
variables for which the subformula is handled.

Example We use again the example theory shown in the LUP
section. Consider the theory containing formula F' shown in (6)
with D = {1,2,3}, and assume I contains the information that
P(1) and Q(1) are true. When instantiating the universally quan-
tified variable x in formula F', we are only interested in values for
which the subformula F’ is not known to be true. Because the
grounding for these instantiations would end up being simplified
to t anyway, these can be dropped from the large conjunction that
F will become. We are therefor only interested in values of x for
which it is not yet known that F’(z) is true. This corresponds with
querying our symbolic representation with {z : ~F¢r(x)}. We re-
fer again to the symbolic representation as a definition in Figure 2
and observe that rule five expresses that the implication is trivially
satisfied if its consequent is true. Since Q(1) is known to be true,

F’(1) is derived to be true, eliminating it from the answer set of the
above query.

A note on implementation Similar to the implementation of LUP
above, we use a symbolic representation of the theory that is based
on BDDs and is approximative.

3.4 Overview of the workflow

Algorithms 1 and 2 illustrate the high-level structure of our top-
down, depth-first grounding algorithm. The three discussed tech-
niques are integrated into the grounding workflow. Lifted Unit
Propagation is called before the grounding of the individual for-
mulas (Algorithm 1, line 5), resulting in I’ with I <, I’. Ground
With Bounds is called at the start of every recursive call (Al-
gorithm 2, line 2), eliminating parts of the formula that are un-
necessary to ground e.g. reducing the domain of quantified vari-
ables). The Reduced Grounding is the combination of the simplify
at the end of every recursive call (line 23) and the evaluation of
atoms (line 6) in Algorithm 2, this helps reducing the ground-
ing after it is made. More interested readers can find the source
code of the grounder discussed here as part of the IDP? system at
http://dtai.cs.kuleuven.be/krr/software/idp

input : A partial structure [and a theory 7’
output: A quantifier-free theory equisatisfiable with T°
Function groundTheory(T,T):
T’ «+ transform(7T")
St < tseitsinize(T")
G+ 0
I' + LUP(I,SY
for formula) in T' do
| G < G U groundForm(z, I')
return toCNF(G)
Algorithm 1: High level overview of the workflow

® N AN N R W N e

input : Formula ¢, structure /
output: A quantifier-free and possibly simpler version of ¢

1 Function groundForm(1,1):

2 '+ GWB(1))

3 switch ¢’ do

4 case atom P(T)

5 if I contains P(T) then

6 | return I — evaluate(P(T))

7 else

8 | return P(Z)

9 case \/, ¥

10 d«0

1 for v); in 1)’ do

12 | d< dU groundForm(v;,1)
13 out < disjunction(d)

14 case \, ¥;

15 \ -- - (analog to the disjunctive case)
16 case dr € D : ¢

17 d«0

18 for 2’ € D do

19 | d <« dU groundForm(¢[x/z'],I)
20 out <+ disjunction(d)
21 caseVr € D : ¢
22 \ -+ (analog to the existential case)
23 return simplify(out)

Algorithm 2: The grounding of a formula w.r.t. a structure

Nr | Problem Name Origin
1 | 15 Puzzle ASP09
2 | Blocked NQueens ASP09
3 | Channel Routing ASP09
4 | Connected Dominating Set ASP09
5 | Edge Matching ASP09
6 | Graph Partitioning ASP09
7 | Hamiltonian Path ASP09
8 | Hierarchical Clustering ASP09
9 | Maze Generation ASP09

10 | Schur Numbers ASP09

11 | Travelling Salesperson ASP09

12 | Weight Bounded Dominating Set | ASP09

13 | Wire Routing ASP09

14 | Generalized Slitherlink ASP11

15 | Fastfood Optimality Check ASP11

16 | Sokoban Decision ASP11

17 | Knight Tour ASP11

18 | Disjunctive Scheduling ASP11

19 | Packing Problem ASP11

20 | Labyrinth ASP11

21 | Numberlink ASP11

22 | Reverse Folding ASP11

23 | Hanoi Tower ASP11

24 | Magic Square Sets ASP11

25 | Airport Pickup ASP11

26 | Partner Units ASP11

27 | Maze Generation ASP11

28 | Tangram ASP11

29 | Permutation Pattern Matching ASP13

30 | Graceful Graphs ASP13

31 | Bottle Filling Problem ASP13

32 | NoMystery ASP13

33 | Sokoban ASP13

34 | Ricochet Robot ASP13

35 | Solitaire ASP13

36 | Weighted Sequence Problem ASP13

37 | Incremental Scheduling ASP13

38 | Visitall ASP13

39 | Knight Tour With Holes ASP13

40 | Graph Colouring ASP13

41 | Bounded Spanning Tree -

42 | Latin Squares -

43 | Sudoku -

Table 1. Problems in our benchmark set

4. Grounding Experiments

In this section, we present the detailed results of the experiments we
performed on the grounding techniques of the previous section. Ta-
ble 1 shows the problems used during these experiments and their
origins. These are all problems of the three previous ASP compe-
titions that are classified with a “NP” complexity. We also added
three problems that were prevously used in grounding experiments
performed by another group [19]. For each of these problems the
experiment is run with ten instances that were randomly selected.
All experiments are performed with a memory threshold of 4GB
and a time threshold of 300 seconds.

We aim to investigate the effect of the three grounding tech-
niques presented in the previous section on the “efficiency” of the
grounding step. In order to determine this, we compare different
combinations of these techniques and measure the effect on the ef-
ficiency of the grounding phase. Efficiency is measured using three
properties:

ID LUP | GWB | RED
Runrgr yes yes yes
Runrpge yes yes no
Runr.r yes no yes
Runpga yes no no
Run,gr no yes yes
Run,ga no yes no
Run,.r no no yes
Rungq. no no no

Table 2. Different experiment setups

e The number of instances that were successfully grounded
within the thresholds.

e The duration of the grounding phase, measured in seconds.
¢ The size of the resulting grounding, as defined in Section 2

The three identified grounding optimization techniques can be ac-
tivated or disabled, so there are eight ways to combine them. The
column labeled “ID” of Table 2 accords an identifier to each of
the combinations. E.g., Runy, ¢, represents the run where LUP and
GWB were activated, and RED was not.

In Section 4.1 we investigate the effect of RED by comparing
Rung., with Run,,r. This allows us to determine the benefits
of adding the RED technique when no other technique is used.
Section 4.2 compares Run,,r with Runr,;r to see what added
benefit LUP offers when RED is used to take advantage of the
extra information derived by LUP. Section 4.3 contains a report of
three comparisons to examine the advantages that GWB offers.

Detailed information for all runs is presented in Table 3. Since
Runy ., and Run, . are not used in any of the comparisons above,
no experiments are performed for these combinations. For each run
(identified in the leftmost column) we present three statistics.

® sy is the number of instances that were successfully grounded,
® {44 18 the average running time of the successful instances, and
® gaug is the average grounding size of the successful instances

Table 3 shows the runs for which the highest number of successful
runs was achieved in bold. The last row of the table also shows the
total number of successfully ground instances for each run. When
not a single instance was successfully grounded, the table shows an
“-” for average time and grounding size.

Examining Table 3, we observe the following.

e The three runs that have the most successfully grounded in-
stances are the three runs including GWB.

There is only one problem for which none of the approaches
could successfully ground even a single instance (37). This
problem is known to favor the usage of Constraint Program-
ming (CP) techniques. IDP? offers an option in which these
techniques are used, but we discovered this option was not
turned on for this problem in our benchmark set.

e There is one problem for which none of the approaches have an
effect on the efficiency of the grounding phase (36). This can
also be explained by the fact that this is a problem for which
CP does very well. In contrast to problem 37 IDP*’s CP option
was turned on for this problem.

The table shows that there is variety in the difficulty; some prob-
lems can be ground by the naive approach and other problems
require techniques.

e Consecutive ASP competitions became harder to ground. ASP09
problems can be ground by any run. ASP11 contains a few
problems for which the most naive run could not ground a

single instance. ASP13 has problems for which multiple ap-
proaches could not ground a single instance.

e Generally, when the resulting grounding size is smaller, the
grounding time is also reduced.

All comparisons are presented in Table 4. For the comparison
between Run; and Run; (identified in the first column) we present
two statistics:

. tz/"v ¢ is the ratio (in percent) of the average running time of Run;/
over the average running time of Run; when both approaches
succeeded. L.e., t4vy Of Run;, divided by ¢4, of Run;, only
counting instances where both Run; and Run; succeed.

o gff;g is the ratio (in percent) of the average grounding size of
Run;s over the average grounding size of Run; when both ap-
proaches succeeded. L.e., gavg Of Run;/ divided by ga. ¢ of Run;,
only counting instances where both Run,; and Run;s succeed.

It is important to note that comparisons are only made between
instances that both approaches could successfully ground. As a re-
sult, the ratios presented in Table 4 can in not be obtained by divid-
ing the corresponding values present in Table 3, unless ofcourse,
both approaches were able to solve the exact same set of instances.
When not a single instance was successfully grounded by both
approaches, the table shows an “-” for ratio of average time and
grounding size.

4.1 Experimental Evaluation of RED

The comparison between Rung., and Run,,r is shown in the
second row of Table 4. This comparison shows that adding RED
is very benificial to the efficiency of the grounding step; on average
the grounding is done in 71.66% of the time and the resulting
grounding is only 37.62% as big. Moreover, for some problems,
the decrease in ground size is several orders of magnitude (e.g.
problems 2, 3, and 21). On the other hand, there are problems for
which this technique has no effect (e.g. problems 10, 19, and 36).

Table 3 shows that the addition of RED also has a positive influence
on the number of successfully grounded instances, going from 226
to 313. From this we can conclude that the addition of RED without
any additional techniques only has positive effects on the efficiency
of the grounding and has no drawbacks. Combined with the fact
that the implementation of this technique is rather straightforward,
as mentioned in Section 3.1, it is highly advisable to implement it.

4.2 Experimental Evaluation of LUP

This section compares Run,,r with Run;,r to see what added
benefit LUP offers when RED is used to take advantage of the
extra information derived by LUP. The experimental data for the
comparison can be found in Table 4 in the third row. This compari-
son shows that the additional information that LUP derives can im-
prove the usage of the RED technique even further; on average the
grounding is done in 87.62% of the time and the resulting ground-
ing is only 69.03% as big. Additionally, the number of successfully
grounded instances increases from 313 to 326. For some problems
no additional information could be derived, so the grounding size
remains the same, whilst increasing the average running time (e.g.
problems 3, 5, and 18). From this we can derive that the computa-
tional cost of the LUP execution is acceptable; even for problems
in which it derives nothing and thus offers no advantages, the av-
erage grounding time increases at most by 5%. For LUP we can
thus conclude that the implementation of this technique is definitely
worthwhile. Whilst it offers no improvements in the efficiency of
the grounding step as a standalone option when no other options
are activated, the extra elements it derives are able to be success-
fully exploited by other grounding techniques. We also note that the
implementation of this technique is more challenging than the im-

plementation of RED, since special data structures and reasoning
techniques need to be implemented to create and query the sym-
bolic representation. Even with our approximative implemention
of LUP (as mentioned in Section 3.2), we observe an increased
average grounding time for some of the problems. This indicates
special care needs to be taken to not make the implementation too
costly.

4.3 Experimental Evaluation of GWB

In order to determine the effect of the GWB technique we perform
three comparisons. First we compare Run,,r with Run,gr to
determine the benefit of using GWB in combination with RED
as opposed to when only RED is used. Next we compare Runr . r
with Runzgr to see analyse how much GWB benefits from the
extra information derived by LUP. To illustrate the approximative
nature of our GWB implementation, we compare Runrg, with
Runzgr. This will give an idea of how much derivations were
“missed” because of approximative method.

The comparison between Run,, r and Run,gr is shown in the
fourth row of Table 4 and it shows that on average the grounding
is done in 62.58% of the time. As argued when introducing the
GWRB technique (see Section 3.3), results show that the grounding
size remains the same. This shows that although GWB and RED
achieve the same purpose (i.e., reduce the grounding size), the
advantage that the GWB technique does this beforehand leads to a
substantial decrease in grounding time.

The fifth row of Table 4 shows a similar comparison of Runy . r
with Runygr. The effect of adding GWB when both LUP and
RED are already activated leads to a grounding time that is on aver-
age 54.67% that of before. This is the largest decrease in grounding
time for the addition of a single technique. This additionally shows
that GWB is able to use the extra information derived by LUP ef-
fectively; it reduces the grounding time to 54.67% of the former
time, as opposed to the 62.58% reduction that was witnessed in
the previous comparison in which LUP was absent. The grounding
size is reduced as well (98.68%). This is counter-intuitive because
we argued in the previous section that adding GWB when RED is
already present the grounding size should remain the same. This is
also confirmed by the by the fourth row in the table. We examined
this and discovered that this reduction in grounding size is caused
by three problems where there is a certain lack of optimization
in the implementation of our technique. More specifically, some
Tseitin symbols are introduced twice where only one was neces-
sary for Runz,;r. On the other hand, Run;,¢r did not contain these
duplicates.

The comparison between Runrc, and Runpgr is shown in the
last row of Table 4. The grounding size difference here shows
the approximative nature of our GWB technique. If GWB was
complete, the addition of the RED technique would not lead to
a smaller average grounding size. This is constrasted by the ob-
servation that in this comparison, the average grounding size is
reduced to 47.24% of the original size. This means that the sim-
plifications that are not done by GWB due to its approximative
nature account for over half of the remaining grounding size. The
significant speedup offered by GWB, combined with the fact that
the implementation is highly approximative (on average half of the
remaining grounding size could be prevented by GWB but had to
be simplified by RED) serves as a good motivation towards future
work investigating the possibility to reduce the approximative na-
ture of the GWB method without incurring too much overhead.

As was the case with LUP, the implementation of the GWB
technique is challenging. Nonetheless, we observe that this tech-
nique is essential when building a state-of-the-art grounder. De-
spite its current approximative implementation in IDP?, GWB ap-

Runrcr Runrce Runr.r Run.cr Run,.r Rung,q
1D S# lavg Javg | S# lavg Javg | S# lavg Javg | S# lavg Javg | S# lavg Gavg | S# tavg Javg
1 10 0 215558 10 0 223240 10 0 215558 10 0 222583 10 0 222583 10 0 296408
2 10 1 3190 10 1 13312 10 14 3190 10 1 4992 10 14 4992 9 45 17904694
3 10 3 74836 10 3 126229 8 86 49209 10 3 74836 8 85 49209 4 131 117658700
4 10 0 6952 10 0 59696 10 0 6952 10 0 6952 10 0 6952 10 0 161406
5 10 4 4116943 10 4 6478315 10 13 4116943 10 3 4116943 10 12 4116943 7 16 42750706
6 10 0 34301 10 0 194975 10 0 34301 10 0 34301 10 0 34301 10 0 194975
7 10 0 2600 10 0 4549 10 0 2600 10 0 78234 10 0 78234 10 0 141799
8 10 1 48132 10 1 68761 9 0 47722 9 1 776837 9 1 776837 9 1 1225968
9 10 0 9692 10 0 45014 10 1 9692 10 0 11934 10 1 11934 10 3 3186601
10 10 0 71502 10 0 71537 10 0 73406 10 0 73144 10 0 73144 10 0 75076
11 10 0 16880 10 0 47877 10 0 30782 10 0 16604 10 0 16604 10 1 1366231
12 10 0 1100 10 0 29281 10 1 1100 10 0 1100 10 1 1100 10 8 10176834
13 10 0 112314 10 0 309399 10 25 112314 10 0 125686 10 25 125686 6 31 48805667
14 10 9 1063733 7 6 9049236 5 100 154492 5 47 33537369 5 139 33537369 0 - -
15 10 1 15903 10 2 1013460 10 20 15903 10 16 14349222 10 39 14349222 0 - -
16 10 1 1507466 10 4 10195036 10 12 1507466 4 37 73869847 4 38 73869847 0 - -
17 10 2 30806 10 2 50625 10 15 30806 8 7 2293888 8 9 2293888 7 4 1586793
18 3 30 1904374 3 30 2089858 1 23 1737497 3 30 1904374 1 22 1737497 0 - -
19 3 11 6635640 2 6 3969862 3 11 6635640 2 6 3969748 2 6 3969748 2 6 3970001
20 8 72 632396 3 33 45063936 8 90 632396 6 37 6059844 6 40 6059844 3 37 47697810
21 10 0 150285 10 0 406347 7 37 14247 10 0 151076 7 37 14615 2 10 26014222
22 1 10 1487006 1 15 5509897 1 31 1487006 1 10 1492710 1 31 1492710 1 63 22641079
23 10 1 884547 10 3 5667748 10 1 884547 10 9 16027486 10 9 16027486 10 12 19663568
24 10 0 2804 10 0 83751 10 0 2804 10 0 6146 10 0 6146 7 3 102586
25 8 25 25194237 8 25 32407583 2 66 3348329 8 24 25328233 2 65 3368745 0 - -
26 10 1 3813188 10 1 5240087 10 20 3813188 10 1 3813388 10 21 3813388 0 - -
27 10 65 50060 10 66 815970 4 87 27996 10 65 202036 2 60 91321 0 - -
28 10 16 367124 0 - - 10 34 367124 10 16 367124 10 34 367124 0 - -
29 10 28 4458517 10 29 4481669 5 34 529380 10 29 4458517 5 33 529380 4 30 1601321
30 10 0 31059 10 0 33536 10 0 31059 10 0 31059 10 0 31059 10 0 36893
31 10 5 1045989 10 6 4029795 0 - 10 4 1063372 0 - - 0 - -
32 5 13 6735660 4 17 18976800 0 - - 2 27 16920003 0 - - 0 - -
33 10 5 2113681 10 5 3082032 3 77 133749 10 5 2113834 3 77 133801 0 - -
34 10 26 7705908 10 27 10077373 10 41 7705908 10 35 16966275 10 49 16966275 10 51 19420756
35 10 0 35550 | 10 0 882915 10 4 35550 | 10 0 43156 | 10 10 43156 0 - -
36 10 0 1702 10 0 1702 10 0 1702 10 0 1702 10 0 1702 10 0 1702
37 0 - - 0 - - 0 - - 0 - - 0 - - 0 - -
38 10 0 25715 10 0 485210 10 0 25715 10 0 314532 10 0 314532 10 0 957380
39 10 13 2400376 10 14 3189129 0 - - 0 - - 0 - - 0 - -
40 10 0 15535 10 0 32013 10 0 15535 10 0 15535 10 0 15535 10 0 162686
41 10 0 46834 | 10 0 50334 | 10 0 46834 | 10 0 277584 | 10 0 277584 | 10 0 281084
42 10 1 1888556 10 1 2775305 10 2 1888556 10 3 4779401 10 3 4779401 10 3 4860001
43 10 5 1109217 10 5 1547641 10 80 1194156 10 5 1183534 10 76 1183534 5 4 2181169
[Sum [388 [368 [326 [358 [313 [226 \

Table 3. Detailed experiment results for all benchmarks, for each discussed combination of grounding techniques

. 57 57
Comparison t,f;g gf;,g

Rung,, vs Rung,.r | 71.66 37.62
Run,.r vsRunr.r 87.62 69.03
Run;.r Vs Run,ar | 62.58 100
Runr.r Vs Runpgr | 54.67 98.68
Runpg, VSRunpgr | 85.94 47.24

Table 4. Ratios of average grounding time and size between runs

pears to be the best of the three discussed techniques to decrease
the grounding time.

5. Solver Behaviour on Optimized Ground
Theories

As mentioned in our introduction, the IDP? system uses the
ground-and-solve approach. The previous section was concerned
with investigating the effects of RED, LUP, and GWB on the
grounding step. This section is dedicated to examining the effect
that a smaller grounding has on the search process. We state this
question more clearly:

Let 7 be some FO(-) theory, and 71, T2 two ground theories
which are equisatisfiable to 7. Also, let 7; be obtained by a more
optimized grounding algorithm than 73, so that the size of 77 is

smaller than the size of 72. How difficult is it for a state-of-the-art
CDCL solver to find a model starting from 77 resp. 72?

In general, the larger a ground theory, the harder it is to find a
model for it, so we expect to take less time to find a model M;
for 71 than to find a model M> for 72. This is experimentally
confirmed by [19] on the Bounded Spanning Tree, Latin Squares
and Sudoku problem set. In this section, we will investigate in more
detail what aspect of finding a model becomes harder: is the actual
search tree for finding M> bigger than that for finding M;? Or is
the cause of the slowdown simply due to the overhead of keeping
more constraints consistent?

We first investigate a simple example to get a grasp of what the
difference between 77 and 7> might look like. Assume:

T=pANPA(PV (¥ AT))

A simple grounding mechanism would introduce a Tseitin lit-
eral [18] L to unnest the rightmost conjunct:

To=pANPANPVLr)AN (Lt &Y Aw)

While a smart grounding algorithm using LUP could derive that
P must be true, and hence could use RED to obtain a simpler, but
equisatisfiable, flattened theory:

Ti=pAP

So the difference between 7; and 73 is the fact that the constraint
(P V (¥ A)) is no longer present in 77, since it is a logical

consequence of 7;. As observed by [19], the unit propagation
(UP) capability of a CDCL-solver does not eliminate the difference
between optimized groundings. For example, UP should also derive
P to be true, but the resulting theories are still not equal in size:

UP(Th) =¢
and
UP(T2) = ¢ A (Lt & ¢ A)

So solving 7; will be easier than solving 72, even with unit prop-
agation of P taken into account. However, it is theoretically easy
to find some assignment satisfying (Lt < 1 A 7): simply assign
L the truth value of ¥ A 7, which is always possible since Lt is
a Tseitin variable not occurring in ¢. On the other hand, a solver
might choose a value for Lz before the truth value of (¢ A) is
known, potentially incurring an exponential blowup of the search
space as compared to solving 77 . In this section, we investigate how
much trouble a modern solver has with the extra constraints in an
unoptimized ground theory.

In theory using an optimized small grounding instead of a naive
larger one can speed up the search process in two aspects:

1. The solver has to keep track of less and smaller formulas and
assign values to fewer variables, typically reducing the solve
time by a factor proportional to the reduction of the size of the
ground theory.

2. The omitted ground formulas represented hard constraints for
the solver, so the optimized grounding represents a less complex
problem. As a result, the search tree needed to find a model is
smaller, potentially leading to an exponential speedup.

To decide which aspect is the dominant one, we extract from the
benchmark set introduced in the previous section those instances
that could be grounded by both the most naive grounding approach
(Runy..) and the most advanced one (Runycr) in under 300 sec-
onds. This resulted in a set of 226 instances, for which a distribution
of the grounding sizes is given in Figure 3. It is clear that, on aver-
age, the ground sizes of the optimized grounding are more than ten
times smaller than those of the naive grounding.

On these two ground theories we run MINISAT(ID), IDP?’s
state-of-the-art CDCL-based solver, for each instance and compare
the results. For this ground-and-solve workflow IDP® was given
a 900 second time limit, as well as a 4GB memory limit. The
time needed for MINISAT(ID) to solve the grounded instances is
given in Figure 4. A first conclusion is that of the 226 instances,
32 more could be solved when using the optimized grounding,
and that, on average, it takes more time to solve Rung, instances
than Runzgr. These findings are consistent with [19] and with
the general intuition that smaller groundings lead to reduced solve
time.

Note that CDCL-solvers such as MINISAT (ID) follow a depth-
first search strategy: at every search step, the solver decides a new
atom to assign a truth value to, propagates implied truth values of
other literals, and checks whether the assignment of truth values
is still consistent. If not, a conflict occurs, and the CDCL-solver
backjumps to a consistent state. To verify the cause of the solve
time difference for optimized and unoptimized groundings, we plot
the number of decisions, propagations and conflicts of our solve
runs in Figures 5, 6 and 7 respectively. From these three measures,
the number of conflicts is the best representative for search tree
width, since every conflict results in a backjump step, triggering
the exploration of a new branch in the search tree. The number of
decisions often also is an indicator of search tree width, but a high
number of decisions does not necessarily entail a high number of
branches in a search tree. For instance, an unconstrained problem
with n variables will require n decisions to be made, even though

the search tree never branches. The number of propagations on the
other hand is a measure of overhead: if two solving runs incur the
same number of conflicts, but a different number of propagations,
then the solving run with the most propagations will have done
more work in each branch of the search tree, and will typically take
more time.

So from a theoretical point of view, problems for which a solver
obtained many conflicts are hard for that solver, while problems
with many propagations in each search branch simply state that
many variables had to be assigned a value to keep the solver state
consistent, implying either a lot of variables, or a lot of constraints
to keep track of.

Given these thoughts, we see in Figure 7 that the amount of in-
stances solved with relatively few conflicts (less than ten thousand)
is equal between both grounding approaches. It is only when the
number of conflicts gets high that optimizing the grounding leads to
more solved problem instances. A similar observation can be made
in Figure 5 for the number of decisions of each solving run. Figure
6 on the other hand shows is different because even for problems
with relatively few propagations the optimized grounding instance
requires significantly less propagations than its unoptimized coun-
terpart.

These observations are consistent with the hypothesis that the
most significant cause for solve time speedup with optimized
groundings is simply the reduction of overhead incurred by e.g.
performing more propagations during solving. The above obser-
vations are not consistent with the hypothesis that the most sig-
nificant cause for solve time speedup with optimized groundings
is the reduction of the search tree inferred by the removal of hard
constraints. Using this hypothesis, we would expect the number
of conflicts for the solver runs on the unoptimized instances to
be significantly larger than the number of conflicts for the solver
runs on the optimized instances, over the whole range of instances.
The increase observed between runs with more than ten thousand
conflicts can be explained by the fact that faster solving times for
the optimized grounding (see Figure 4) lead to more plot points.
These extra plot points will generally be associated with a large
number of conflicts, since they represent difficult search problems
that resulted in a solving timeout for the naive grounding.

To further investigate this issue, we conducted a statistical anal-
ysis of our data. We are trying to support or debunk the claim that
optimizing the grounding leads to a less search problem, or alter-
natively, leads to less overhead during search. We made the reason-
able assumption that the number of conflicts during search is a good
indicator of problem complexity, and the number of propagations
is a good indicator of problem overhead. All that is left to check
is whether a large increase in ground size due to disabling ground-
ing optimizations leads to a large increase of conflicts or propaga-
tions when solving the problem instance. We quantify an increase
in ground size of a problem instance as the ratio of the size of the
unoptimized grounding to the size of the optimized grounding (i.e.,
grounding size of Runy,, divided by grounding size of Runrgr).
Similarly, an increase in conflicts resp. propagations is quantified as
the ratio of conflicts resp. propagations observed when solving the
unoptimized grounding to the ratio of conflicts resp. propagations
observed when solving the optimized grounding. This second quan-
tification is only meaningful when the solving run did not hit the
timeout, so we restrict our benchmark set to the 160 instances for
which both the optimized and unoptimized grounding were solved.

Given these formal notions, we now correlate increases in
ground size to increases in conflicts or increases in propagations.
This is done by calculating Spearman’s rank correlation coefficient
for both of these measures. The results, shown in Table 5, indicate
that an increase in ground size does only very marginally lead to
an increase in the number of conflicts, while an increase in ground

correlated variables

| Spearman p | 95% confidence interval

increase in ground size, increase in conflicts
increase in ground size, increase in propagations

0.046 [<0.109,0.198]
0.617 [0.511,0.704]

Table 5. Correlating increases in ground size

Ground size X Run_XXX 1 Run_LGR

1E+9

B
1E+8

1E+7 HMK:

0 II
| o
% 1E+6 |||||II||I
E d III|II|II|I||I
g 1E+5 L II||IIIII
E x III|I|I||" ||III"|||II|||||||||||I|I|I|II||

=L

3 |I|II|I|IIIIIII
II|I|||||I|III||III|||II
1E+3 IIIIII|I|
III
1E+2 v
0 50 100 — ;

Number of instances

Figure 3. Cactus plot of ground sizes for instances grounded by
xxx and LGR

Solve time X Run_XXX | Run_LGR

X

18 R__fﬁy“ i

1E+6 p
|
I|I|||||I||||||||II|II

0 50 100 150 200
Number of instances

Figure 4. Cactus plot of solve times for instances grounded by xxx
and LGR

Decisions X Run_XXX 1 Run_LGR

1E+7

<
1E+6 5 I.'""

=
m
+
o

1E+4

1E+3

Number of decisions

1E+2 |I||I|II .
2
1E+1

x
1E+Q =
0 50 100 150 200

Number of instances

Figure 5. Cactus plot of the number of decisions made by
MINISAT(ID) while finding a model for instances grounded by
xxx and LGR

size is strongly correlated to an increase in propagations. Also, the
obtained correlations are well within appropriate error margins.

Given this statistical data, and given the preceding plot-based
observations, we find that optimizing the grounding process does
not significantly reduce the search tree of a subsequent solving step,
but it does lead to less overhead for the solver during search. This
can intuitively be explained by the fact that it is relatively simple to
derive that these omissible constraints are logical consequences of
the original theory, since we were able to detect during grounding
that the constraints could be omitted. Nonetheless, it goes to the
credit of modern CDCL-solvers that they are not distracted by
these extra constraints, but instead seem to largely ignore them in
their search trees. We suspect that activity-based heuristics, which
prioritize assignments to variables occurring in difficult constraints,
play a key role in the observed behaviour.

6. Conclusion

This paper presents three grounding techniques in detail and gives
an intuitive description for them. For these techniques two sets of
experiments are run. The first provides an empirical analysis of the
three mentioned grounding techniques. These experiments show
that the RED technique is easy to implement and has no downsides,
whilst offering a great reduction in the grounding size and time.
The LUP technique is harder to implement and care needs to be
taken that it does not have an unnacceptable computational cost.
Combined with RED, the LUP technique offers a reduction in the
grounding size and time. Finally, the GWB technique is also hard
to implement but provides the largest reduction in grounding time.
We show that when RED is used (and there is no reason not to
since it has no downsides), GWB does not offer any reductions
in the grounding size. We also show that the addition of the LUP
technique also benefits GWB, leading to an even larger reduction
in grounding time. It is hard to generalize these results to systems
other than IDP?, since there is no clear mapping to the techniques
that are present in, for example, ASP grounders, which are based
around semi-naive bottom-up evaluation.

The second set of experiments results in an empirical analysis of
the effect that a smaller grounding has on the subsequent solving
phase of declarative systems. We observe that a smaller ground-
ing results in a significant speedup, but this speedup is not due to
large reductions in the search tree, but rather due to less overhead
in satisfying easy-to-satisfy constraints. This result can be applied
to other ground-and-solve systems which employ grounding tech-
niques aimed at reducing the grounding size in a similar way.

References

[1] Aavani, A., Wu, X.N., Tasharrofi, S., Ternovska, E., Mitchell, D.G.:
Enfragmo: A system for modelling and solving search problems with
logic. In Bjgrner, N., Voronkov, A., eds.: LPAR. Volume 7180 of
LNCS., Springer (2012) 15-22

Bancilhon, F.: Naive evaluation of recursively defined relations. In
Brodie, M., Mylopoulos, J., eds.: On Knowledge Base Management
Systems. Topics in Information Systems. Springer New York (1986)
165-178

De Cat, B.: Separating Knowledge from Computation: An FO(.)
Knowledge Base System and its Model Expansion Inference. PhD
thesis, KU Leuven, Leuven, Belgium (May 2014)

[2

—

[3

=

[4] De Cat, B., Bogaerts, B., Devriendt, J., Denecker, M.: Model expan-
sion in the presence of function symbols using constraint program-
ming. In: ICTAL, IEEE (2013) 1068-1075

[5] De Cat, B., Jansen, J., Janssens, G.: IDP3: Combining symbolic and
ground reasoning for model generation. (2013)

[6] De Pooter, S., Wittocx, J., Denecker, M.: A prototype of a knowledge-
based programming environment. In Tompits, H., Abreu, S., Oetsch,
J., Piihrer, J., Seipel, D., Umeda, M., Wolf, A., eds.: INAP/WLP.
Volume 7773 of Lecture Notes in Computer Science., Springer (2011)
279-286

[7]1 Denecker, M., Lierler, Y., Truszczynski, M., Vennekens, J.: A Tarskian
informal semantics for answer set programming. In Dovier, A., Costa,
V.S., eds.: ICLP (Technical Communications). Volume 17 of LIPIcs.,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012) 277-289

[8] Denecker, M., Ternovska, E.: A logic of nonmonotone inductive
definitions. ACM Trans. Comput. Log. 9(2) (April 2008) 14:1-14:52

[9] Denecker, M., Vennekens, J.: The well-founded semantics is the
principle of inductive definition, revisited. In Baral, C., De Giacomo,
G., Eiter, T., eds.: KR, AAAI Press (2014)

[10] Faber, W., Leone, N., Perri, S.: The intelligent grounder of DLV. In
Erdem, E., Lee, J., Lierler, Y., Pearce, D., eds.: Correct Reasoning.
Volume 7265 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2012) 247-264

[11] Gebser, M., Kaminski, R., Konig, A., Schaub, T.: Advances in Gringo
series 3. In Delgrande, J.P., Faber, W., eds.: LPNMR. Volume 6645 of
LNCS., Springer (2011) 345-351

[12] Gebser, M., Schaub, T., Thiele, S.: GrinGo : A new grounder for
Answer Set Programming. In Baral, C., Brewka, G., Schlipf, J.S.,
eds.: LPNMR. Volume 4483 of LNCS., Springer (2007) 266271

[13] Jansen, J., Janssens, G.: Refining definitions with unknown opens
using XSB for IDP3. Number AIB-2014-09 in Aachener Informatik
Berichte, RWTH Aachen University (jun 2014) 15-29

[14] Jansen, J., Jorissen, A., Janssens, G.: Compiling input+ FO(-) in-
ductive definitions into tabled Prolog rules for IDP3. TPLP 13(4-5)
(2013) 691-704

[15] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S.,
Scarcello, F.: The DLV system for knowledge representation and
reasoning. ACM Trans. Comput. Log. 7(3) (2006) 499-562

[16] Nethercote, N., Stuckey, P., Becket, R., Brand, S., Duck, G., Tack, G.:
Minizinc: Towards a standard CP modelling language. In Bessiere, C.,
ed.: CP’07. Volume 4741 of LNCS., Springer (2007) 529-543

[17] Niemeld, I., Simons, P., Syrjénen, T.: Smodels: A system for answer
set programming. In: Proceedings of the 8th International Workshop
on Non-Monotonic Reasoning, Breckenridge, Colorado, USA (2000)
CoRR, ¢s.AI/0003033.

[18] Tseitin, G.S.: On the complexity of derivation in the propositional
calculus, Zapiski nauchnykh seminarov. LOMI 8 (1968) 234-259 En-
glish translation of this volume: Studies in Constructive Mathematics
and Mathematical Logic, Part 2, A. O. Slisenko, eds. Consultants Bu-
reau, N.Y., 1970, pp. 115-125.

[19] Vaezipoor, P., Mitchell, D., Marién, M.: Lifted unit propagation for
effective grounding. CoRR abs/1109.1317 (2011)

[20] Wittocx, J., Denecker, M., Bruynooghe, M.: Constraint propagation
for extended first-order logic. CoRR abs/1008.2121 (2010)

[21] Wittocx, J., Denecker, M., Bruynooghe, M.: Constraint propagation
for first-order logic and inductive definitions. ACM Trans. Comput.
Logic 14(3) (August 2013) 17:1-17:45

[22] Wittocx, J., Marién, M., Denecker, M.: Grounding FO and FO(ID)
with bounds. J. Artif. Intell. Res. (JAIR) 38 (2010) 223-269

Propagations X Run_XXX I Run_LGR
1E+9 x

1E+8

Number of propagations
= = =
m m m
+ + +
(%) o ~

: il
...
£ I|I||||||III|||IIIIIIIIIII||
t

1E+4 o
g
1E+3 ;%‘"'
1E+2
0 50 100 150 200

Number of instances

Figure 6. Cactus plot of the number of literals propagated while
finding a model for instances grounded by xxx and LGR

Conflicts X Run_XXX 1 Run_LGR

1E+7
.u
I

1E+6 x

!
: ant
||l||||||ll||||||l

'

1E+4

=
m
+
w

Number of conflicts

1E+2

1E+1

1E+0Q s

0 50 100 150 200
Number of instances

Figure 7. Cactus plot of encountered conflicts while finding a
model for instances grounded by xxx and LGR

