
Symmetric explanation learning: Effective
dynamic symmetry handling for SAT

Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe

KU Leuven, Department of Computer Science
Celestijnenlaan 200A, 3001 Heverlee, Belgium

firstname.lastname@cs.kuleuven.be

Abstract. The presence of symmetry in Boolean satisfiability (SAT)
problem instances often poses challenges to solvers. Currently, the most
effective approach to handle symmetry is by static symmetry breaking,
which generates asymmetric constraints to add to the instance. An alter-
native way is to handle symmetry dynamically during solving. As modern
SAT solvers can be viewed as propositional proof generators, adding a
symmetry rule in a solver’s proof system would be a straightforward
technique to handle symmetry dynamically. However, none of these pro-
posed symmetrical learning techniques are competitive to static symme-
try breaking. In this paper, we present symmetric explanation learning, a
form of symmetrical learning based on learning symmetric images of ex-
planation clauses for unit propagations performed during search. A key
idea is that these symmetric clauses are only learned when they would
restrict the current search state, i.e., when they are unit or conflicting.
We further provide a theoretical discussion on symmetric explanation
learning and a working implementation in a state-of-the-art SAT solver.
We also present extensive experimental results indicating that symmetric
explanation learning is the first symmetrical learning scheme competitive
with static symmetry breaking.

Keywords: Boolean satisfiability, symmetry, proof theory, symmetric
learning, dynamic symmetry breaking

1 Introduction

Hard combinatorial problems often exhibit symmetry. When these symmetries
are not taken into account, solvers are often needlessly exploring isomorphic
parts of a search space. Hence, we need methods to handle symmetries that
improve solver performance on symmetric instances.

One common method to eliminate symmetries is to add symmetry breaking
formulas to the problem specification [10, 1], which is called static symmetry
breaking. For the Boolean satisfiability problem (SAT), the tools Shatter [3]
and BreakID [14] implement this technique; they function as a preprocessor
that can be used with any SAT solver.

Dynamic symmetry handling, on the other hand, interferes in the search pro-
cess itself. For SAT, dynamic symmetry handling has taken on many forms. Early

2

work on this topic dynamically detects symmetry after failing a search branch to
avoid failing symmetrical search branches, using an incomplete symmetry detec-
tion strategy [7]. Next, dynamic symmetry breaking posts and retracts symmetry
breaking formulas during search, dynamically detecting symmetry with graph
automorphism techniques [5].

A more principled approach is implemented by SymChaff, a structure-aware
SAT solver [29]. Next to a conjunctive normal form (CNF) theory, SymChaff
assumes as input a special type of symmetry, structuring the Boolean variables
from the theory in so-called k-complete m-classes. This structure is then used
to branch over a subset of variables from the same class instead of over a single
variable, allowing the solver to avoid assignments symmetric to these variables.

Arguably, the most studied dynamic symmetry handling approach is sym-
metrical learning, which allows a SAT solver to learn symmetrical clauses when
constructing an unsatisfiability proof. The idea is that SAT solvers do not only
search for a satisfying assignment, but simultaneously try to prove that none ex-
ists. For this, their theoretical underpinning is the propositional resolution proof
system [28], which lets a SAT solver learn only those clauses that are resolvents of
given or previously learned clauses. A SAT solver’s proof system provides upper
bounds on the effectiveness of SAT solvers when solving unsatisfiable instances.
For instance, for encodings of the pigeonhole principle, no polynomial resolution
proofs exist [19], and hence, a SAT solver cannot solve such encodings efficiently.

However, if one were to add a rule that under a symmetry argument, a
symmetrical clause may be learned, then short proofs for problems such as the
pigeonhole encoding exist [23]. As with the resolution rule, the central question
for systems that allow the symmetry argument rule then becomes what selec-
tion of symmetrical clauses to learn, as learning all of them is infeasible [20]
(nonetheless, some have experimented with learning all symmetrical clauses in
a SAT solver [30]). The symmetrical learning scheme (SLS) only learns the
symmetrical images of clauses learned by resolution, under some small set of
generators of a given symmetry group [6]. Alternatively, symmetry propagation
(SP) learns a symmetrical clause if it is guaranteed to propagate a new literal
immediately [15]. Finally, for the graph coloring problem, symmetry-handling
clauses can be learned based on Zykov contraction [20]. Unfortunately, none of
these are competitive to state-of-the-art static symmetry breaking for SAT, as
we will show with extensive experiments.

Symmetrical learning, as discussed in the previous paragraph differs signif-
icantly from the other methods discussed. These other methods all prune the
search tree in a satisfiability-preserving way, but possibly also prune out mod-
els, for instance by adding symmetry breaking clauses or by not considering all
possible choices at a given choice point. As such, they change the set of models
of the theory, hence why we call them symmetry breaking. Symmetrical learn-
ing exploits symmetry in another way: if unsatisfiabilty of a certain branch of
the search tree is concluded, it manages to learn that symmetrical parts of the
search tree are also unsatisfiable; all clauses learned by symmetrical learning are

3

consequences of the original specification. Hence, it never eliminates any models:
symmetries are not broken, but merely exploited.

In this paper, we propose a new approach to symmetrical learning – sym-
metric explanation learning (SEL) – that improves upon our earlier work on
symmetry propagation [15]. SEL’s central idea is to learn a symmetric image
of a clause only if (i) the clause is an explanation for a unit propagated literal
and if (ii) the symmetric image itself is either unit or conflicting. In short, (i)
limits the number of symmetric images under investigation to a manageable set,
and (ii) guarantees that any learned symmetric clause is useful – it restricts the
search state – at least once.

We experimentally validate this algorithm and conclude that SEL is the first
dynamic symmetry exploitation approach to successfully implement a symmetric
learning scheme. It performs on-par with the award winning static symmetry
breaking tool BreakID [14] and outperforms previous symmetrical learning
algorithms such as SLS [6] and SP [15].

The rest of this paper is structured as follows. In Section 2 we recall some
preliminaries on symmetry and satisfiability solving. Afterwards, we introduce
our new algorithm in Section 3 and compare it to related work in Section 4. We
present experimental results in Section 5 and conclude in Section 6.

2 Preliminaries

Satisfiability problem Let Σ be a set of Boolean variables and B = {t, f} the
set of Boolean values denoting true and false respectively. For each x ∈ Σ,
there exist two literals; the positive literal denoted by x and the negative literal
denoted by ¬x. The negation ¬(¬x) of a negative literal ¬x is the positive literal
x, and vice versa. The set of all literals over Σ is denoted Σ. A clause is a finite
disjunction of literals (l1∨. . .∨ln) and a formula is a finite conjunction of clauses
(c1∧ . . .∧cm). By this definition, we implicitly assume a formula is an expression
in conjunctive normal form (CNF).

A (partial) assignment is a set of literals (α ⊂ Σ) such that α contains at
most one literal over each variable in Σ. Under assignment α, a literal l is said
to be true if l ∈ α, false if ¬l ∈ α, and unknown otherwise. An assignment α
satisfies a clause c if it contains at least one true literal under α. An assignment
α satisfies a formula ϕ, denoted α |= ϕ, if α satisfies each clause in ϕ. If α |= ϕ,
we also say that ϕ holds in α. A formula is satisfiable if an assignment exists
that satisfies it, and is unsatisfiable otherwise. The Boolean satisfiability (SAT)
problem consists of deciding whether a formula is satisfiable. Two formulas are
equisatisfiable if both are satisfiable or both are unsatisfiable.

An assignment α is complete if it contains exactly one literal over each vari-
able in Σ. A formula ψ (resp. clause c) is a logical consequence of a formula ϕ,
denoted ϕ |= ψ (resp. ϕ |= c), if for all complete assignments α satisfying ϕ, α
satisfies ψ (resp. α satisfies c). Two formulas are logically equivalent if each is a
logical consequence of the other.

4

A clause c is a unit clause under assignment α if all but one literals in c are
false. A clause c is a conflict clause (or conflicting) under α if all literals in c are
false.

We often consider a formula ϕ in the context of some assignment α. For this,
we introduce the notion of ϕ under α, denoted as ϕ ↓α, which is the formula
obtained by conjoining ϕ with a unit clause (l) for each literal l ∈ α. Formally,
ϕ ↓α is the formula

ϕ ∧
∧
l∈α

l

Symmetry in SAT Let π be a permutation of a set of literals Σ. We extend π to
clauses: π(l1∨ . . .∨ ln) = π(l1)∨ . . .∨π(ln), to formulas: π(c1∧ . . .∧cn) = π(c1)∧
. . . ∧ π(cn), and to assignments: π(α) = {π(l) | l ∈ α}. We write permutations
in cycle notation. For example, (a b c)(¬a ¬b ¬c)(¬d d) is the permutation that
maps a to b, b to c, c to a, ¬a to ¬b, ¬b to ¬c, ¬c to ¬a, swaps d with ¬d, and
maps any other literals to themselves.

Permutations form algebraic groups under the composition relation (◦). A
set of permutations P is a set of generators for a permutation group G if each
permutation in G is a composition of permutations from P. The group Grp(P)
is the permutation group generated by all compositions of permutations in P.
The orbit OrbG(x) of a literal or clause x under a permutation group G is the
set {π(x) | π ∈ G}.

A symmetry π of a propositional formula ϕ over Σ is a permutation over Σ
that preserves satisfaction to ϕ; i.e., α |= ϕ iff π(α) |= ϕ.

A permutation π of Σ is a symmetry of a propositional formula ϕ over Σ if
the following sufficient syntactic condition is met:
– π commutes with negation: π(¬l) = ¬π(l) for all l ∈ Σ, and
– π fixes the formula: π(ϕ) = ϕ.

It is easy to see that these two conditions guarantee that π maps assignments
to assignments, preserving satisfaction to ϕ.

Typically, only this syntactical type of symmetry is exploited, since it can be
detected with relative ease. One first converts a formula ϕ over variables Σ to a
colored graph such that any automorphism – a permutation of a graph’s nodes
that maps the graph onto itself – of the graph corresponds to a permutation of
Σ that commutes with negation and that fixes the formula. Next, the graph’s
automorphism group is detected by tools such as nauty [25], Saucy [22] or
bliss [21], and is translated back to a symmetry group of ϕ.

The technique we present in this paper works for all kinds of symmetries, syn-
tactical and others. However, our implementations use BreakID for symmetry
detection, which only detects a syntactical symmetry group by the method de-
scribed above.

2.1 Conflict Driven Clause Learning SAT solvers

We briefly recall some of the characteristics of modern conflict driven clause
learning SAT (CDCL) solvers [24].

5

A CDCL solver takes as input a formula ϕ over a set of Boolean variables
Σ. As output, it returns an (often complete) assignment satisfying ϕ, or reports
that none exists.

Internally, a CDCL solver keeps track of a partial assignment α – called the
current assignment – which initially is empty. At each search step, the solver
chooses a variable x for which the current assignment α does not yet contain a
literal, and adds either the positive literal x or the negative literal ¬x to α. The
added literal is now a choice literal, and may result in some clauses becoming unit
clauses under the refined current assignment. This prompts a unit propagation
phase, where for all unknown literals l occurring in a unit clause, the current
assignment is extended with l. Such literals are propagated literals; we refer to
the unit clause that initiated l’s unit propagation as l’s explanation clause. If no
more unit clauses remain under the resulting assignment, the unit propagation
phase ends, and a new search step starts by deciding on a next choice literal.

During unit propagation, a clause c can become conflicting when another
clause propagates the last unknown literal l of c to false. At this moment, a CDCL
solver will construct a learned clause by investigating the explanation clauses
for the unit propagations leading to the conflict clause. This learned clause c
is a logical consequence of the input formula, and using c in unit propagation
prevents the conflict from occurring again after a backjump.1 We refer to the set
of learned clauses of a CDCL solver as the learned clause store ∆.

Formally, we characterize the state of a CDCL solver solving a formula ϕ by
a quadruple (α, γ,∆, E), where

– α is the current assignment,
– γ ⊆ α is the set of choice literals – the set of literals α \ γ are known as

propagated literals,
– ∆ is the learned clause store,
– E is a function mapping the propagated literals l ∈ α\γ to their explanation

clause E(l), which can be either a clause from the input formula ϕ or from
the learned clause store ∆.

During the search process, the invariant holds that the current assignment is
a logical consequence of the decision literals, given the input formula. Formally:

ϕ ↓ γ |= ϕ ↓α.

Secondly, the learned clauses are logical consequences of the input formula:

ϕ |= c for each c ∈ ∆.

3 Symmetric Explanation Learning

From the definition of symmetry, the following proposition easily follows:

1 Backjumping is a generalization of the more classical backtracking over choices in
combinatorial solvers.

6

Proposition 1. Let ϕ be a propositional formula, π a symmetry of ϕ, and c a
clause. If ϕ |= c, then also ϕ |= π(c).

Proof. If ϕ |= c then π(ϕ) |= π(c), as π renames the literals in formulas and
clauses. Symmetries preserve models, hence π(ϕ) is logically equivalent to ϕ,
hence ϕ |= π(c).

Since learned clauses are always logical consequences of the input formula,
every time a CDCL solver learns a clause c, one may apply Proposition 1 and
add π(c) as a learned clause for every symmetry π of some symmetry group of G.
This is called symmetrical learning, which extends the resolution proof system
underpinning a SAT solver’s learning technology with a symmetry rule.

Symmetrical learning can be used as a symmetry handling tool for SAT:
because every learned clause prevents the solver from encountering a certain
conflict, the orbit of this clause under the symmetry group will prevent the
encounter of all symmetrical conflicts, resulting in a solver never visiting two
symmetrical parts of the search space.

However, since the size of permutation groups can grow exponentially in the
number of permuted elements, learning all possible symmetrical clauses will in
most cases add too many symmetrical clauses to the formula to be of practical
use. Symmetrical learning approaches need to limit the amount of symmetrical
learned clauses [20].

Given a set of input symmetries P, the idea behind symmetric explanation
learning (SEL) is to aim at learning symmetrical variants of learned clauses
on the moment these variants propagate. A naive way to obtain this behaviour
would be to check at each propagation phase for each clause c ∈ ∆ and each
symmetry π ∈ P whether π(c) is a unit clause. Such an approach would have
an unsurmountable overhead. Therefore, we implemented SEL using two opti-
mizations.

The first is that we make a selection of “interesting” clauses: the symmetrical
variants of clauses in ∆ that are explanation clauses of some propagation in
the current search state. The intuition is that an explanation clause c contains
mostly false literals, so, assuming that the number of literals permuted by some
symmetry π is much smaller than the total number of literals in the formula,
π(c) has a good chance of containing the same mostly false literals.

Secondly, we store those promising symmetrical variants in a separate sym-
metrical learned clause store Θ. Clauses in this store are handled similar to
clauses in ∆, with the following differences:
1. propagation with ∆ is always prioritized over propagation with Θ,
2. whenever a clause in Θ propagates, it is added to ∆,
3. whenever the solver backjumps over a propagation of a literal l, all symmet-

rical clauses π(E(l)) are removed from Θ.
The first two points ensure that no duplicate clauses will ever be added to ∆

without the need for checking for duplicates. Indeed, by prioritizing propagation
with ∆, a clause in Θ can only propagate if it is not a part of ∆ yet. The third
point guarantees that Θ contains only symmetrical variants of clauses that have
shown to be relevant in the current branch of the search tree.

7

On a technical note, Θ contains clauses π(E(l)) from the moment l is prop-
agated until a backjump unassigns l. As a result, it is useless to add π(E(l)) to
Θ if it is satisfied at the moment l is propagated, as it will never become an
unsatisfied unit clause before backjumping over l. Similarly, it is not necessary
to store any literals of π(E(l)) that are false at the moment l is propagated,
as these will not change status before backjumping over l. To combat this, Θ
contains an approximation π(E(l))∗ of π(E(l)), which excludes any literals that
are false at the moment l is propagated. If π(E(l))∗ ever becomes unit, so does
π(E(l)). At this point, we recover the original clause π(E(l)) from some stored
reference to π and l, by simply applying π to E(l) again. Additionally, before
adding a unit π(E(l)) as a learned clause to ∆, our implementation performs
a self-subsumption clause simplification step, as this is a simple optimization
leading to stronger learned clauses [31].

Finally, keeping track of unit clauses in Θ during refinement of the current
assignment is efficiently done by the well-known two-watched literal scheme [27].

We give pseudocode for SEL’s behavior during a CDCL solver’s propagation
phase in Algorithm 1.

data: a formula ϕ, a set of symmetries P of ϕ, a partial assignment α, a set of
learned clauses ∆, an explanation function E , a set of symmetrical
explanation clauses Θ

1 repeat
2 foreach unsatisfied unit clause c in ϕ or ∆ do
3 let l be the unassigned literal in c;
4 add l to α;
5 set c as E(l);
6 foreach symmetry π in P do
7 if π(E(l)) is not yet satisfied by α then
8 add the approximation π(E(l))∗ to Θ;
9 end

10 end

11 end
12 if an unsatisfied unit clause π(E(l))∗ in Θ exists then
13 add the self-subsumed simplification of π(E(l)) to ∆;
14 end

15 until no new literals have been propagated or a conflict has occurred ;
Algorithm 1: propagation phase of a CDCL solver using SEL

Example 1 presents a unit propagation phase with the SEL technique.

Example 1. Let a CDCL solver have a state (α, γ,∆, E) with current assignment
α = ∅, choice γ = ∅, learned clause store∆ = {(a∨b), (¬c∨d∨e)} and explanation
function E the empty function. Let π = (a c)(¬a ¬c)(b d)(¬b ¬d) be a syntactical
symmetry of the input formula ϕ, and assume for the following exposition that
no propagation happens from clauses in ϕ. As the current assignment is currently
empty, the symmetrical learned clause store Θ is empty as well.

8

Suppose the CDCL algorithm chooses ¬a, so α = γ = {¬a}. During unit
propagation, the CDCL algorithm propagates b, so α = {¬a, b}, γ = {¬a} and
E(b) = a ∨ b. By Algorithm 1, SEL adds π(E(b)) = c ∨ d to Θ, so Θ = {c ∨ d}.
No further unit propagation is possible, and c ∨ d is not unit or conflicting, so
the solver enters a new decision phase.

We let the solver choose ¬d, so α = {¬a, b,¬d}, γ = {¬a,¬d}. Still, no unit
propagation on clauses from ϕ or from the learned clause store ∆ is possible.
However, c ∨ d in Θ is unit, so SEL adds c ∨ d to ∆.

Now unit propagation is reinitiated, leading to the propagation of c with
reason E(c) = c ∨ d and e with reason E(e) = ¬c ∨ d ∨ e, so α = {¬a, b,¬d, c, e}.
As both π(E(c)) = a∨ b and π(E(e)) = ¬a∨d∨ e are satisfied by α, they are not
added to Θ. No further propagation is possible, ending the propagation loop. N

Note that if a symmetry π is a syntactic symmetry of a formula ϕ, SEL will
never learn a symmetrical clause π(c) from a clause c ∈ ϕ, as π(c) ∈ ϕ already,
and has propagation priority on any other π(c) constructed by SEL. Moreover,
due to technical optimizations, π(c) will not even be constructed by SEL, as it
is satisfied due to unit propagation from ϕ’s clauses. From another perspective,
any clause learned by SEL is the symmetrical image of some previously learned
clause.

Also note that SEL is able to learn symmetrical clauses of symmetry compo-
sitions π′ ◦ π, with π and π′ two symmetries of the input formula. This happens
when at a certain point, c is an explanation clause and π(c) an unsatisfied unit
clause, and at some later moment during search, π(c) is an explanation clause
and π′(π(c)) an unsatisfied unit clause.

3.1 Complexity of SEL

Assuming a two-watched literal implementation for checking the symmetrical
clause store Θ on conflict or unit clauses, the computationally most intensive
step for SEL is filling Θ with symmetrical explanation clauses during unit prop-
agation. Worst case, for each propagated literal l, SEL constructs π(E(l)) for
each π in the set of input symmetries P. Assuming k to be the size of the largest
clause in ϕ or ∆, this incurs a polynomial O(|P|k) time overhead at each propa-
gation. As for memory overhead, SEL must maintain a symmetrical clause store
containing O(|P||α|) clauses, with α the solver’s current assignment.

Of course, as with any symmetrical learning approach, SEL might flood the
learned clause store with many symmetrical clauses. In effect, as only symmet-
rical explanation clauses are added to the learned clause store if they propagate
or are conflicting, an upper bound on the number of symmetrical clauses added
is the number of propagations performed by the solver, which can be huge. Ag-
gressive learned clause store cleaning strategies might be required to maintain
efficiency.

9

4 Related Work

In this section, we describe the relation of SEL and symmetric learning to other
SAT solving techniques from literature.

4.1 SEL and SLS

One proposed way to restrict the number of clauses generated by symmetrical
learning is the symmetrical learning scheme (SLS) [6]. Given an input set of
symmetries P, SLS only learns π(c) for each π ∈ P, and for each clause c
learned by resolution after a conflict. If c contains only one literal, the set of
symmetrical learned clauses from c is extended to the orbit of c under the group
generated by P.

A disadvantage of SLS is that not all symmetrical learned clauses are guar-
anteed to contribute to the search by propagating a literal at least once. This
might result in lots of useless clauses being learned, which do not actively avoid
a symmetrical part of the search space. It also is possible that some clauses
learned by this scheme already belong to the set of learned clauses, since most
SAT solvers do not perform an expensive check for duplicate learned clauses.

In Section 5, we give experimental results with an implementation of SLS.

4.2 SEL and SP

Another way to restrict the number of learned symmetrical clauses is given by
symmetry propagation (SP) [15]. SP also learns symmetrical clauses only when
they are unit or conflicting, but it uses the notion of weak activity to derive
which symmetrical clauses it will learn.

Definition 1. Let ϕ be a formula and (α, γ,∆, E) the state of a CDCL solver.
A symmetry π of ϕ is weakly active for assignment α and choice literals γ if
π(γ) ⊆ α.

Weak activity is a is a refinement of activity ; the latter is a technique used in
dynamic symmetry handling approaches for constraint programming [18, 26].

Now, if a symmetry π of a formula ϕ is weakly active in the current solver
state (α, γ,∆, E), then SP’s implementation guarantees that for propagated lit-
erals l ∈ α \ γ, π(E(l)) is unit [15]. Then, SP adds any unsatisfied unit clauses
π(E(l)) to the learned clause store, and uses these to propagate π(l).2

As SEL checks whether π(E(l)) is unit for any input symmetry π, regardless
of whether π is weakly active or not, SEL detects at least as many symmetri-
cal clauses that are unit and unsatisfied as SP. Note that in Example 1, after
making the choice ¬a, π is not weakly active, as ¬a ∈ α but π(¬a) = ¬c 6∈ α.

2 SP focuses its presentation on propagating symmetrical literals π(l) for weakly ac-
tive symmetries, hence the name symmetry propagation. We present SP from a
symmetrical learning point of view, using the fact that SP employs π(E(l)) as a
valid explanation clause for π(l)’s propagation.

10

Furthermore, after propagation of b and making the choice ¬d, SEL does learn
the symmetrical explanation clause π(E(b)) = (c ∨ d), propagating π(a) = c
in the process. This shows that SEL learns strictly more symmetrical clauses,
performs more propagation than SP, and closes an increasing number of sym-
metrical search branches over time.

4.3 Compatibility of symmetrical learning and preprocessing
techniques

As modern SAT solvers employ several preprocessing techniques [8] to transform
an input formula ϕ to a smaller, hopefully easier, equisatisfiable formula ϕ′, we
should argue the soundness of SEL combined with those techniques. We do this
by giving a sufficient condition of the preprocessed formula for which symmetrical
learning remains a sound extension of a SAT solver’s proof system.

Theorem 1. Let ϕ and ϕ′ be two formulas over vocabulary Σ, and let π be a
symmetry of ϕ. Also, let ϕ′ be
1. a logical consequence of ϕ and
2. equisatisfiable to ϕ.

If clause c is a logical consequence of ϕ then ϕ′ ∧ π(c) is
1. a logical consequence of ϕ and
2. equisatisfiable to ϕ.

Proof. As c is a logical consequence of ϕ, π(c) is as well, by Proposition 1. Hence,
ϕ′ ∧ π(c) remains a logical consequence of ϕ, since both ϕ′ and π(c) hold in all
models of ϕ, proving 1.

This also means that any satisfying assignment to ϕ is a satisfying assignment
to ϕ′ ∧ π(c), so if ϕ is satisfiable, ϕ′ ∧ π(c) is satisfiable too. As the addition of
an extra clause to a formula only reduces the number of satisfying assignments,
if ϕ′ is unsatisfiable, ϕ′∧π(c) is unsatisfiable too. Since ϕ′ is equisatisfiable with
ϕ, ϕ′ ∧ π(c) is unsatisfiable if ϕ is unsatisfiable. This proves 2.

Corollary 1. Let ϕ be a formula and π be a symmetry of ϕ. Symmetrical learn-
ing with symmetry π is sound for CDCL SAT solvers over a preprocessed formula
ϕ′ if ϕ′ is a logical consequence of ϕ and if ϕ′ is equisatisfiable to ϕ.

Proof. Any clause c learned by resolution or symmetry application on clauses
from ϕ′ or logical consequences of ϕ is a logical consequence of ϕ. Hence, by
Theorem 1, it is sound to learn the symmetrical clause π(c) when solving for ϕ′.

In other words, if a preprocessing technique satisfies the conditions from Theo-
rem 1, it is sound to symmetrically learn clauses in a CDCL SAT solver, as is
done by the SEL algorithm.

This is not a trivial, but also not a strict requirement. For instance, common
variable and clause elimination techniques based pioneered by SatELite [16]
and still employed by i.a. Glucose satisfy this requirement. One exception,
ironically, is static symmetry breaking, as the added symmetry breaking clauses

11

are not logical consequences of the original formula. Also, a preprocessing tech-
nique that introduces new variables does not satisfy the above requirements, and
risks to combine unsoundly with symmetrical learning.

4.4 Symmetrical learning does not break symmetry

The earliest techniques to handle symmetry constructed formulas that removed
symmetrical solutions from a problem specification, a process that breaks the
symmetry in the original problem specification. Ever since, handling symmetry
seems to have become eponymous with breaking it, even though a symmetrical
learning based technique such as SEL only infers logical consequences of a for-
mula, and hence does not a priori remove any solutions. In this paper, we tried
to consistently use the term symmetry handling where appropriate.

An advantage of non-breaking symmetry handling approaches is that it re-
mains possible for a solver to obtain any solution to the original formula. For
instance, non-breaking symmetry handling approaches such as SEL can be used
to generate solutions to a symmetric formula, which are evaluated under an
asymmetric objective function [2]. Similarly, approaches such as SEL can be
used in a #SAT solver [9].

5 Experiments

In this section, we present experiments gauging SEL’s performance. We im-
plemented SEL in the state-of-the-art SAT solver Glucose 4.0 [4] and made
our implementation available online [12]. Symmetry was detected by running
BreakID, which internally uses Saucy as graph automorphism detector.

All experiments have a 5000s time limit and a 16GB memory limit. The
hardware was an Intel Core i5-3570 CPU with 32GiB of RAM and Ubuntu
14.04 Linux as operating system. Detailed results and benchmark instances have
been made available online3.

We first present a preliminary experiment on row interchangeability – a par-
ticular form of symmetry detected by BreakID – in Subsection 5.1, and give
our main result in Subsection 5.2.

5.1 Row interchangeability

Row interchangeability is a particular form of symmetry where a subset of the
literals are arranged as a matrix with k rows and m columns, and any permu-
tation of the rows induces a symmetry [14]. This type of symmetry is common,
occurring often when objects in some problem domain are interchangeable. For
example, the interchangeability of pigeons in a pigeonhole problem, or the inter-
changeability of colors in a graph coloring problem lead to row interchangeability
at the level of a propositional specification. This type of symmetry can be broken

3 bitbucket.org/krr/sat_symmetry_experiments

12

completely by static symmetry breaking formulas of polynomial size, resulting in
exponential search space reduction in e.g. pigeonhole problem specifications [14].

While the dynamic symmetry breaking solver SymChaff specializes in row
interchangeability, it is unclear how SEL (or symmetrical learning in general)
can efficiently handle this type of symmetry. As SEL only supports an input set
of simple symmetries as defined in Section 2, we currently use a set of generators
as a representation for a row interchangeability symmetry group. We investigate
two possible representations for a row interchangeability group with k rows:
– a linear representation, containing k − 1 symmetries that swap consecutive

rows, as well as the one symmetry swapping the first and last row.
– a quadratic representation, containing k(k− 1)/2 symmetries that swap any

two rows, including non-consecutive ones.
To experimentally verify the effectiveness of both approaches, we generated

two benchmark sets. The first consists of unsatisfiable pigeonhole formulas,
which assign k pigeons to k−1 holes. We only provided the row interchangeabil-
ity symmetry group stemming from interchangeable pigeons to the symmetry
handling routines. We shuffled the variable order of the formulas, to minimize
lucky guesses by Glucose’s heuristic. The number of pigeons in the instances
ranges between 10 and 100.

The second benchmark set consists of 110 both satisfiable and unsatisfiable
graph coloring problems, where we try to color graphs with k or k − 1 col-
ors, where k is the input graph’s chromatic number4. We only provided the
row interchangeability symmetry group stemming from interchangeable colors
to the symmetry handling routines, ignoring any potential symmetry in the in-
put graph. Input graphs are taken from Michael Trick’s web page [32].

As a baseline, we use Glucose 4.0 coupled with the static symmetry break-
ing preprocessor BreakID, whose symmetry detection routine is disabled and
only gets to break the row interchangeability groups mentioned previously. The
results for pigeonhole are given in Table 1, and for coloring are given in Ta-
ble 2. Solving time needed by BreakID’s symmetry detection is ignored, as this
was always less than 2.1 seconds, and the same for any approach.

On pigeonhole, the quadratic approach outperforms the linear approach,
solving instances with up to 30 pigeons opposed to only 16 pigeons. However,
even the quadratic approach does not reach the speedup exhibited by BreakID,
easily handling instances with 100 pigeons. On coloring, the quadratic approach
does manage to outperform both the linear approach and BreakID.

Based on this experiment, we default SEL to use a quadratic amount of row-
swapping symmetry generators to represent a row interchangeability symmetry
group.

5.2 Evaluation of SEL

We evaluate SEL by comparing the following five solver configurations:

4 For the few instances where the chromatic number was not known, we made an
educated guess based on the graph’s name.

13

pigeons BreakID SEL–quadratic SEL–linear

10 0 0 0.04
11 0 0.06 0.3
12 0 0.15 0.08
13 0 0.93 0.81
14 0 0.01 4.97
15 0 0.03 791.26
16 0 0.04 4766.31
17 0 0.53 -
18 0 0.25 -
19 0 3.73 -
20 0 42.85 -
25 0.01 0.9 -
30 0.02 277.57 -
40 0.05 - -
50 0.13 - -
70 0.41 - -
100 1.47 - -

Table 1. Solving time in seconds of BreakID and SEL with different generator sets
for pigeonhole interchangeability. A “-” means the time limit of 5000s was reached.

instances BreakID SEL–quadratic SEL–linear

110 70 87 74
Table 2. Total number of graph coloring instances solved within 5000s for BreakID
and SEL with different generator sets for graph coloring interchangeability.

– Glucose: pure Glucose 4.0, without any symmetry detection or handling
routines.

– BreakID: Glucose 4.0 coupled with the BreakID symmetry breaking
preprocessor in its default settings.

– SEL: our implementation of SEL in Glucose 4.0, taking as input the sym-
metries detected by BreakID in its default settings. This includes any row
interchangeability symmetry detected by BreakID, which is interpreted as
a quadratic set of row swapping symmetries.

– SP: the existing implementation of Symmetry propagation [13] in the classic
SAT solver MiniSAT [17], using its optimal configuration [15]. We slightly
extended this implementation to take BreakID’s symmetry output as input,
and interpreted any row interchangeability symmetry as a quadratic set of
symmetries.

– SLS: our implementation of SLS in Glucose 4.0, taking as input the sym-
metries detected by BreakID in its default settings. This includes any row
interchangeability symmetry detected by BreakID. Contrary to the other
solvers, we interpret interchangeability here as the linear amount of genera-
tors. The reason for this is that we noticed in preliminary testing that SLS
simply couldn’t handle a quadratic number of generators: with this it almost
always ran out of memory.

Our benchmark instances are partitioned in five benchmark sets:

14

benchmark set Glucose BreakID SEL SP SLS

app14 (300/160) 222 220 215 179 187
hard14 (300/107) 174 189 188 172 175
app16 (299/131) 150 151 151 127 141
hard16 (200/131) 52 93 80 48 70
highly (204/202) 106 151 152 151 113

Table 3. Total number of successfully solved instances for each of the five solver
configurations and each of the five benchmark sets.

– app14: the application benchmarks of the 2014 SAT competition. 300 in-
stances; BreakID detected some symmetry for 160 of these.

– hard14: the hard-combinatorial benchmarks of the 2014 SAT competition.
300 instances; BreakID detected some symmetry for 107 of these.

– app16: the application benchmarks of the 2016 SAT competition. 299 in-
stances; BreakID detected some symmetry for 131 of these.

– hard16: the hard-combinatorial benchmarks of the 2016 SAT competition.
200 instances; BreakID detected some symmetry for 131 of these.

– highly: an eclectic set of highly symmetric instances collected over the years.
204 instances; BreakID detected some symmetry for 202 of these. Instance
families include graph coloring, pigeonhole, Ramsey theorem, channel rout-
ing, planning, counting, logistics and Urquhart’s problems.

We reiterate that detailed experimental results, benchmark instances and
source code of the employed systems have been made available online [11, 12, 13].

Table 3 lists the number of successfully solved instances for each of the five
solver configurations and each of the five benchmark sets. Except for Glucose,
BreakID’s symmetry detection and breaking time are accounted in the total
solving time.

First and foremost, BreakID jumps out of the pack as the best all-around
configuration: performing well on the strongly symmetric highly instances, as
well as on the more challenging SAT competition instances, of which especially
app14 and app16 feature very large instances.

Second, SEL seems quite competitive. In hard14, app16 and highly, SEL
and BreakID trade blows. Only on hard16, SEL’s performance seems signifi-
cantly inferior to BreakID.

Third, Glucose performs badly on highly, which can be expected given the
strong symmetry properties of those instances. hard16’s low success rate is due
to 35 pigeonhole instances and 38 highly symmetric tseitingrid instances.

Fourth, SP performs very well on highly, but is dead last in all other bench-
mark sets. This might be due to its embedding in the older MiniSAT, or due to
the overhead of keeping track of weakly inactive symmetries.

Finally, SLS is not able to clinch the lead in any of the benchmark sets, and
especially the bad results on highly are surprising for a symmetry exploiting
technique. We conjecture that highly symmetric instances lead to an uncontrolled
symmetrical clause generation, choking SLS’s learned clause store.

For this, it is worth looking at the number of instances where a solver ex-
ceeded the 16GB memory limit (a memout). These results are given in Table 4.

15

benchmark set Glucose BreakID SEL SP SLS

app14 (300/160) 0 0 18 23 41
hard14 (300/107) 0 0 1 1 13
app16 (299/131) 0 0 2 21 47
hard16 (200/131) 0 0 14 0 49
highly (204/202) 0 0 5 3 50

Table 4. Total number of instances that exceeded the 16GB memory limit.

From Table 4, it is clear that all symmetrical learning approaches (SEL, SP,
SLS) struggle with heavy memory consumption. SLS in particular is unable to
solve many symmetrical instances due to memory constraints. SEL on the other
hand, has relatively few memouts, concentrated mainly in the benchmark sets
app14 and hard16 – the same as those were it had to give BreakID the lead.

We conclude that SEL is a viable symmetrical learning, and by extension,
dynamic symmetry handling approach. However, care must be taken that not
too many symmetrical clauses are learned, filling up all available memory.

6 Conclusion

In this paper, we presented symmetric explanation learning (SEL), a form of
symmetrical learning based on learning symmetric images of explanation clauses
for unit propagations performed during search. A key idea is that these symmet-
ric clauses are only learned when they would restrict the current search state,
i.e., when they are unit or conflicting.

We related SEL to symmetry propagation (SP) and the symmetrical learning
scheme (SLS), and gave a sufficient condition on when symmetrical learning can
be combined with common SAT preprocessing techniques.

We further provided a working implementation of SEL and SLS embedded
in Glucose, and experimentally evaluated SEL, SLS, SP, Glucose and the
symmetry breaking preprocessor BreakID on more than 1300 benchmark in-
stances. Our conclusion is that SEL outperforms other symmetrical learning
approaches, and functions as an effective general purpose dynamic symmetry
handling technique, almost closing the gap with static symmetry breaking.

For future work, we expect that the efficiency of our implementation can still
be improved. Specifically, investigating how to reduce SEL’s memory overhead,
perhaps by aggressive learned clause deletion techniques, has definite potential.

On the theoretical front of symmetrical learning, much work remains to be
done on effectiveness guarantees similar to those provided by complete static
symmetry breaking. Informally, a symmetry breaking formula ψ is complete for
a given symmetry group if no two symmetric solutions satisfy ψ [33]. For in-
stance, BreakID guarantees that its symmetry breaking formulas are complete
for row interchangeability symmetry, resulting in very fast pigeonhole solving
times. Maybe a similar guarantee can be given for some form of symmetrical
learning?

Bibliography

[1] Aloul, F., Ramani, A., Markov, I., Sakallah, K.: Solving difficult SAT in-
stances in the presence of symmetry. In: Design Automation Conference,
2002. Proceedings. 39th. pp. 731–736 (2002)

[2] Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Dynamic symmetry-
breaking for Boolean satisfiability. Ann. Math. Artif. Intell. 57(1), 59–73
(2009)

[3] Aloul, F.A., Sakallah, K.A., Markov, I.L.: Efficient symmetry breaking for
Boolean satisfiability. IEEE Transactions on Computers 55(5), 549–558
(2006)

[4] Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT
solvers. In: Boutilier, C. (ed.) IJCAI. pp. 399–404 (2009)

[5] Benhamou, B., Nabhani, T., Ostrowski, R., Säıdi, M.R.: Dynamic sym-
metry breaking in the satisfiability problem. In: Proceedings of the 16th

international conference on Logic for Programming, Artificial intelligence,
and Reasoning. LPAR-16, Dakar, Senegal (April 25 - may 1, 2010)

[6] Benhamou, B., Nabhani, T., Ostrowski, R., Säıdi, M.R.: Enhancing clause
learning by symmetry in SAT solvers. In: Proceedings of the 2010 22Nd
IEEE International Conference on Tools with Artificial Intelligence - Volume
01. pp. 329–335. ICTAI ’10, IEEE Computer Society, Washington, DC, USA
(2010), http://dx.doi.org/10.1109/ICTAI.2010.55

[7] Benhamou, B., Säıs, L.: Tractability through symmetries in propositional
calculus. Journal of Automated Reasoning 12(1), 89–102 (1994), http://
dx.doi.org/10.1007/BF00881844

[8] Biere, A.: Preprocessing and inprocessing techniques in SAT. In: Eder,
K., Lourenço, J., Shehory, O. (eds.) Hardware and Software: Verifica-
tion and Testing - 7th International Haifa Verification Conference, HVC
2011, Haifa, Israel, December 6-8, 2011, Revised Selected Papers. Lec-
ture Notes in Computer Science, vol. 7261, p. 1. Springer (2011), https:
//doi.org/10.1007/978-3-642-34188-5_1

[9] Birnbaum, E., Lozinskii, E.L.: The good old Davis-Putnam procedure helps
counting models. Journal of Artificial Intelligence Research (1999)

[10] Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking
predicates for search problems. In: Principles of Knowledge Representation
and Reasoning. pp. 148–159. Morgan Kaufmann (1996)

[11] Devriendt, J.: Binaries, experimental results and benchmark instances for
“symmetric explanation learning: effective dynamic symmetry handling for
SAT”. bitbucket.org/krr/sat_symmetry_experiments

[12] Devriendt, J.: An implementation of symmetric explanation learning in Glu-
cose on Bitbucket. bitbucket.org/krr/glucose-sel

[13] Devriendt, J.: An implementation of symmetry propagation in MiniSat on
Github. github.com/JoD/minisat-SPFS

17

[14] Devriendt, J., Bogaerts, B., Bruynooghe, M., Denecker, M.: Improved static
symmetry breaking for SAT. In: Creignou, N., Berre, D.L. (eds.) Theory
and Applications of Satisfiability Testing - SAT 2016 - 19th International
Conference, Bordeaux, France, July 5-8, 2016, Proceedings. Lecture Notes
in Computer Science, vol. 9710, pp. 104–122. Springer (2016), http://dx.
doi.org/10.1007/978-3-319-40970-2_8

[15] Devriendt, J., Bogaerts, B., De Cat, B., Denecker, M., Mears, C.: Symmetry
propagation: Improved dynamic symmetry breaking in SAT. In: IEEE 24th
International Conference on Tools with Artificial Intelligence, ICTAI 2012,
Athens, Greece, November 7-9, 2012. pp. 49–56. IEEE Computer Society
(2012), http://dx.doi.org/10.1109/ICTAI.2012.16

[16] Eén, N., Biere, A.: Effective preprocessing in SAT through variable and
clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT. LNCS, vol. 3569,
pp. 61–75. Springer (2005)

[17] Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tac-
chella, A. (eds.) SAT. LNCS, vol. 2919, pp. 502–518. Springer (2003)

[18] Gent, I.P., Smith, B.M.: Symmetry breaking in constraint programming.
In: Proceedings of ECAI-2000. pp. 599–603. IOS Press (2000)

[19] Haken, A.: The intractability of resolution. Theoretical Computer Sci-
ence 39, 297 – 308 (1985), http://www.sciencedirect.com/science/

article/pii/0304397585901446, third Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science

[20] Heule, M., Keur, A., Maaren, H.V., Stevens, C., Voortman, M.: CNF sym-
metry breaking options in conflict driven SAT solving (2005)

[21] Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for
large and sparse graphs. In: Applegate, D., Brodal, G.S., Panario, D.,
Sedgewick, R. (eds.) Proceedings of the Ninth Workshop on Algorithm Engi-
neering and Experiments and the Fourth Workshop on Analytic Algorithms
and Combinatorics. pp. 135–149. SIAM (2007)

[22] Katebi, H., Sakallah, K.A., Markov, I.L.: Symmetry and satisfiability: An
update. In: Strichman, O., Szeider, S. (eds.) SAT. LNCS, vol. 6175, pp.
113–127. Springer (2010)

[23] Krishnamurthy, B.: Short proofs for tricky formulas. Acta Inf. 22(3), 253–
275 (Aug 1985), http://dl.acm.org/citation.cfm?id=4336.4338

[24] Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propo-
sitional satisfiability. IEEE Transactions on Computers 48(5), 506–521
(1999)

[25] McKay, B.D., Piperno, A.: Practical graph isomorphism, II. Journal of Sym-
bolic Computation 60(0), 94 – 112 (2014), http://www.sciencedirect.
com/science/article/pii/S0747717113001193

[26] Mears, C., Garćıa de la Banda, M., Demoen, B., Wallace, M.: Lightweight
dynamic symmetry breaking. Constraints pp. 1–48 (2013), http://dx.doi.
org/10.1007/s10601-013-9154-2

[27] Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: DAC’01. pp. 530–535. ACM (2001)

18

[28] Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT
solvers as resolution engines. Artif. Intell. 175(2), 512–525 (Feb 2011),
http://dx.doi.org/10.1016/j.artint.2010.10.002

[29] Sabharwal, A.: SymChaff: Exploiting symmetry in a structure-aware sat-
isfiability solver. Constraints 14(4), 478–505 (2009), http://dx.doi.org/
10.1007/s10601-008-9060-1

[30] Schaafsma, B., Heule, M., van Maaren, H.: Dynamic symmetry breaking
by simulating Zykov contraction. In: Kullmann, O. (ed.) Theory and Ap-
plications of Satisfiability Testing - SAT 2009, 12th International Confer-
ence, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings. Lec-
ture Notes in Computer Science, vol. 5584, pp. 223–236. Springer (2009),
http://dx.doi.org/10.1007/978-3-642-02777-2_22

[31] Sörensson, N., Eén, N.: MiniSat v1.13 - a Sat solver with conflict-clause
minimization. 2005. sat-2005 poster. Tech. rep. (2005)

[32] Trick, M.: Network resources for coloring a graph. mat.gsia.cmu.edu/

COLOR/color.html (1994)
[33] Walsh, T.: Symmetry breaking constraints: Recent results. CoRR

abs/1204.3348 (2012)

