
Watched Propagation of 0-1 Integer Linear
Constraints

Jo Devriendt1,2[0000−0002−6346−3665]�

1 Lund University, Lund, Sweden — jo.devriendt@cs.lth.se
2 University of Copenhagen, Copenhagen, Denmark

Abstract. Efficient unit propagation for clausal constraints is a core
building block of conflict-driven clause learning (CDCL) Boolean sat-
isfiability (SAT) and lazy clause generation constraint programming
(CP) solvers. Conflict-driven pseudo-Boolean (PB) solvers extend the
CDCL paradigm from clausal constraints to 0-1 integer linear constraints,
also known as (linear) PB constraints. For PB solvers, many different
propagation techniques have been proposed, including a counter tech-
nique which watches all literals of a PB constraint. While CDCL solvers
have moved away from counter propagation and have converged on a
two watched literals scheme, PB solvers often simultaneously implement
different propagation algorithms, including the counter one.
The question whether watched propagation for PB constraints is more
efficient than counter propagation, is still open. Watched propagation is
inherently more complex for PB constraints than for clauses, and several
sensible variations on the idea exist. We propose a new variant of watched
propagation for PB constraints and provide extensive experimental results
to verify its effectiveness. These results indicate that our watched propa-
gation algorithm is superior to counter propagation, but when paired with
specialized propagation algorithms for clauses and cardinality constraints,
the difference is fairly small.

1 Introduction

Although the Boolean satisfiability (SAT) problem is NP-complete [7, 19] these
days so-called conflict-driven clause learning (CDCL) solvers [20, 23] routinely
solve problems with up to millions of variables. Independently, a similar technique
was developed for constraint programming (CP) solvers [2]. These solvers learn a
propositional disjunction (a clause) from each failing search branch, over time
accumulating huge databases of clauses that further constrain the search. For
example, if, during search, all but one literals of a clause are set to false, the last
remaining literal should be propagated to true.

To efficiently detect which clauses in the database propagate a literal, modern
SAT solvers settled on the watched literal propagation technique [23]. Its core
idea is to only watch two literals of a clause at a time, replacing these watches
when one or both are set to false. If no two non-falsified watches can be found,
the clause either propagates a literal, or it is falsified, indicating a search conflict.



2 J. Devriendt

The conflict-driven paradigm has been transferred to linear pseudo-Boolean
(PB) solving , where solvers deal with linear inequalities over 0-1 integer variables,
or PB constraints for short.3 Formulas of PB constraints are a straightforward
generalization of the conjunctive normal form (CNF) used for SAT solvers.
Crucially, such conflict-driven PB solvers learn PB constraints instead of clauses
[6, 28, 18, 14], which allows them to construct cutting planes proofs [8] instead
of the exponentialy weaker resolution proofs [4, 10, 9, 25] underlying CDCL.

As the database of learned PB constraints grows during search, and as conflict-
driven PB search endeavors to make the learned constraints as strong as possible,
the propagation routine forms the main computational bottleneck of PB solvers.
Similar to CDCL SAT solvers, a hypothetical doubling the efficiency of PB
propagation could translate to almost halving the total run time for conflict-
driven PB solvers. Unlike CDCL SAT solvers however, conflict-driven PB solvers
have not settled on a dominant propagation scheme.

The Galena solver investigated a highly involved watched literal scheme for
PB constraints, but finally settled on a three-tiered approach where clauses
and cardinality constraints were handled with specialized watched propagation
techniques, but propagation of general PB constraints was done by counter
propagation, watching all literals at once [6]. The Pueblo solver initially employed
the same three-tiered approach [27], but later opted for a custom watched literal
scheme [28]. The Sat4J system also uses the three-tiered approach by default, but
has the option to use watched propagation for general PB constraints similar to
the Galena watched literal scheme [18]. Finally, the RoundingSat solver employs
watched propagation, sharing similarities with both the Pueblo and original
Galena approach, but adding its own twists [14].

Unsurprisingly, efficient watched PB propagation is still an open question:

PB solvers get slower when dealing with pseudo-Boolean constraints
because we have not yet found an efficient lazy data structure similar to
[. . . ] watched literals for those constraints. This is especially the case for
the cutting-planes-based solver because the number of pseudo-Boolean
constraints grows during the search. [18]

In this paper, we propose a novel efficient watched PB propagation algorithm,
and contribute extensive experimental data to shed light on key issues. The
general conclusion is that watched PB propagation is more efficient than counter
propagation on its own, but that the difference between a counter-based and a
watched-based three-tiered approach is fairly small.

This paper continues with preliminaries in Section 2 followed by a description
of our proposed watched PB propagation algorithm in Section 3. Section 4
highlights differences and similarities with the approaches used by the above PB
solvers. Experimental results are presented in Section 5 and the paper concludes
with Section 6.

3 In general, PB constraints can be non-linear, but we restrict our attention to linear
PB constraints.



Watched Propagation for PB 3

2 Preliminaries

Throughout this paper, we use the term pseudo-Boolean (PB) constraint to refer
to a 0-1 linear inequality. We identify 1 with true and 0 with false. A literal `
denotes either a variable x or its negation x, where x = 1−x. We assume without
loss of generality that all constraints

∑
i ci`i ≥ w are written in normalized

form, where literals `i are over pairwise distinct variables, coefficients ci are
non-negative integers, and w is a positive integer called the degree (of falsity). For
a constraint C, lits(C) denotes its set of literals, size(C) its number of literals,
and maxcf (C) its largest coefficient. A PB constraint C where maxcf (C) = 1 is
a cardinality constraint and a constraint with degree 1 is a clause.

A (partial) assignment ρ is a set of literals over pairwise distinct variables. A
literal ` is assigned to true by an assignment ρ if ` ∈ ρ, assigned to false or falsified
if ` ∈ ρ, and is unassigned otherwise. The slack of a constraint C

.
=

∑
i ci`i ≥ w

under a partial assignment ρ is

slack(C, ρ) = −w +
∑
`i 6∈ρ

ci , (1)

i.e., the maximal value the left-hand side can attain under any partial assignment
ρ′ ⊇ ρ minus the degree. We say that ρ falsifies C if slack(C, ρ) < 0 and satisfies
C if for any ρ′ ⊇ ρ it holds that slack(C, ρ′) ≥ 0. A pseudo-Boolean formula ϕ
is a set of PB constraints. An assignment ρ is a solution to ϕ if ρ satisfies all
constraints in ϕ. A formula is satisfiable if it has a solution.

A sequence (e1, . . . , en) is a finite ordered collection of elements allowing
repetitions.4 In programming fashion, seq [i] denotes the ith element of seq . The
size of a sequence is denoted as size(seq). A tuple is a fixed size sequence with
named elements and tup.e refers to the element with name e of tuple tup.5

2.1 Conflict-Driven Pseudo-Boolean Solving

We present the bare essentials of conflict-driven PB solving necessary for the
discussions in this paper (referring the reader to, e.g., [5] for more details).
Conflict-driven PB solving is very similar to the CDCL algorithm for Boolean
satisfiability, but uses PB constraints instead of clauses.

The state of a PB solver can be abstractly represented by a tuple (ψ, ρ),
where ψ is a set of constraints called the constraint database and ρ is a sequence
of pairwise distinct literals representing the current assignment .6 Initially, ψ is
the input formula ϕ and ρ is the empty sequence ().

Given a solver state, the search loop starts with a propagation phase, which
checks for any constraint C ∈ ψ whether it is falsified:

slack(C, ρ) < 0, (2)

4 Common data structures for sequences are arrays, lists, and vectors.
5 Tuples abstract the record data type.
6 Slightly abusing notation, we defined an assignment as a set, but we often operate on

the current assignment ρ as a sequence, pushing and popping literals from the back.



4 J. Devriendt

or whether a literal `i, not yet assigned by ρ, in C with coefficient ci, is implied
by C under ρ:

slack(C, ρ) < ci with `i 6∈ ρ, `i 6∈ ρ. (3)

If condition (3) holds, C is falsified by ρ∪ `i, so `i is implied by C under ρ. Hence,
ρ can be safely extended with the implied `i, which is called a propagation, while
also saying that C propagates `i. Each propagation can enable new propagations,
continuing the propagation phase until condition (3) does not hold for any
constraint in the database ψ, or until condition (2) holds for at least one.

If condition (2) holds for some constraint, it is considered a conflict , and the
solver enters a conflict analysis phase. During this phase, the solver derives a
learned constraint that is a logical consequence of the input formula and would
have propagated a literal at some earlier state, preventing the same conflict from
happening. This new constraint is added to ψ, after which the solver backjumps
to the earlier state. Alternatively, if no conflict is detected, the solver extends ρ
by making a heuristic decision to assign some currently unassigned variable. In
either case, the solver continues with a new iteration of the search loop.

The PB solver reports unsatisfiability whenever it learns a constraint equiva-
lent to the trivial inconsistency 0 ≥ 1. If propagation does not lead to a conflict
and all variables have been assigned, the solver reports that the input formula is
satisfiable. Conflict-driven PB solvers, like their CDCL counterparts, frequently
backjump to the root search node, clearing the current assignment from any
decision literals and consequent propagations, which is called a restart.

In this paper, we focus on the propagation phase, ensuring that after each
decision and each backjump, the current assignment is extended with implied
literals until fixpoint, or until a conflict arises.

2.2 Counter Pseudo-Boolean Propagation

A straightforward propagation algorithm is the counter approach. It takes its
inspiration from early SAT propagation algorithms and eagerly computes the
slack of each constraint under changes to the current assignment ρ. I.e., each time
a literal ` is pushed to resp. popped from ρ, due to decisions or propagations resp.
backjumps or restarts, each constraint C containing ` has its slack decreased
resp. increased with the coefficient of ` in C. When the slack of C is decreased,
condition (2) and (3) are checked as well to detect propagations and conflicts.

Example 1. Consider a freshly initialized solver where the input formula consists
only of the constraint C

.
= 3x+2y+z+w ≥ 3. Initially, ρ = (), so slack(C, ρ) = 4

and neither condition (2) or (3) hold.
If the solver decides x = 0, then ρ = (x), and counter propagation decreases

the slack with 3: slack(C, ρ) = 1. Now, condition (3) holds: slack(C, ρ) < 2 and
y 6∈ ρ, y 6∈ ρ. Hence, y is propagated and ρ = (x, y). No further slack decreases are
triggered, so counter propagation does not need to check whether condition (2)
or (3) hold.



Watched Propagation for PB 5

The solver can now decide a new variable, say z = 0, so ρ = (x, y, z), at which
point counter propagation again decreases the slack of C with 1 to slack(C, ρ) = 0,
and propagates w, leaving C satisfied by ρ. If the solver instead executes a restart,
the current assignment is reset to ρ = (), and counter propagation increases the
slack of C with 1 + 3 to its original value slack(C, ρ) = 4.

Unfortunately, counter propagation has the potential for a lot of overhead:

Example 2. Consider a freshly initialized solver where the input formula consists
only of the constraint C

.
= 3x + 2y + z +

∑1000
i=1 wi ≥ 3. Let the literals wi be

prioritized by the solver’s decision heuristic. Initially, slack(C, ρ) = 1003, which
decreases by 1 after each decision of some wi. For each of these thousand slack
decrements, condition (2) and (3) are never met, since as long as none of x, y
and z are falsified by the current assignment, slack(C, ρ) ≥ 3.

This phenomenon of large amounts of slack decrements (and increments during
backjumps) can occur in thousands of constraints simultaneously, considerably
slowing down the solver. The watched literal technique attempts to significantly
reduce the number of times the slack of a constraint is calculated.

3 Watched Pseudo-Boolean propagation

Similar observations to those in Example 2 led to the development of watched
(literal) propagation in SAT solvers [23, 30]. This watched approach has been
generalized to pseudo-Boolean solving [6, 28, 18, 14]. The central idea of watched
PB propagation is to track (watch) for each constraint only a subset of its literals
– the watched literals. The subset is chosen sufficiently large to ensure that as
long as none of the watched literals are assigned to false, the constraint is not
propagating or conflicting. If one of the watches is assigned false, a search for
new non-falsified watches is triggered. If insufficient new watches are found, the
constraint may be propagating or conflicting, which is calculated only then.

More formally, we associate each constraint C with a set of watched literals
watches(C). For a constraint with watched literals, the watch slack of a constraint
C

.
=

∑
i ci`i ≥ w under a partial assignment ρ is

watchslack(C, ρ) = −w +
∑

`i 6∈ρ,`i∈watches(C)

ci. (4)

Clearly, for any C, ρ and watches for C, watchslack(C, ρ) ≤ slack(C, ρ), and
watchslack(C, ρ) = slack(C, ρ) if all non-watched literals are falsified by ρ. Hence,
condition (2) and (3) will never hold (so C will not propagate or be conflicting)
if for some set of watches

watchslack(C, ρ) ≥ maxcf (C). (5)

As a result, no exact slack needs to be calculated for constraints for which
condition (5) holds, and only by falsifying a watched literal can condition (5)



6 J. Devriendt

become violated. However, efficiently maintaining appropriate watched literal
sets during backjumps, decisions and propagations is a highly non-trivial matter.

To describe our proposed watched PB propagation algorithm in detail, we
abstract the state of a constraint C to a tuple (terms, w,wslk), where terms is
a sequence of terms, w a positive integer representing the degree, and wslk an
integer storing the watch slack of the constraint. The state of a term in terms is
abstractly represented by a tuple (coef , lit ,wflag) where coef is the coefficient of
the term, lit the literal, and wflag a flag denoting whether the literal is watched
for the constraint, i.e., whether lit ∈ watches(C). We fix terms to be sorted in
decreasing coefficient order, so maxcf (C) = C.terms[1] – the first term of C
contains its largest coefficient.

We also extend the abstraction of the solver state to a tuple (ψ, ρ, q,wlist),
where the propagation index q is an integer s.t. 0 ≤ q ≤ size(ρ) 7, and the watch
list wlist is a function mapping literals to the set of constraints that currently
watch the literal combined with the index of the literal in the constraint’s
term list: (C, i) ∈ wlist(`) iff ` ∈ watches(C) with ` = C.terms[i].lit . We define
ρi

.
= (ρ[1], . . . , ρ[i]) as the subassignment up to index i, with 0 ≤ i ≤ size(ρ). The

propagation index indicates which part of the current assignment has already
been processed for propagation: constraints watching literals in ρ \ ρq will need
to be checked for propagation. Initially, q = 0.

3.1 Detailed Algorithm

We now have the necessary abstractions in place to describe our proposed watched
PB propagation algorithm in detail. For simplicity, we assume that initially, none
of the constraints C are propagating or conflicting, and that their initial watched
literals can be chosen to satisfy watchslack(C, ()) = C.wslk ≥ maxcf (C).

Procedures processWatches, propagate and backjump present the proposed
watched PB propagation algorithm.

Procedure processWatches iterates over all literals ` in the current assign-
ment, adjusting the watch slack for each constraint C watching `, maintaining
the invariant that watchslack(C, ρq) = C.wslk . It subsequently checks whether
C can propagate (or is conflicting) by calling propagate for C. If C is conflict-
ing, it is returned. However, breaking out of the loop at line 5 leaves behind a
semi-processed set of constraints watching `. To repair this, processWatches
decreases the propagation index by one, and increases the watch slack for those
constraints still watching ` that had their watch slack decreased.

To check whether a constraint is conflicting or propagating, propagate first
attempts to find non-falsified non-watched literals to use as watches, in the loop
at line 2. If a sufficient amount of watches is found such that C.wslk ≥ maxcf (C),
no propagation or conflict occurs, the old watch can be discarded at lines 10
and 11, and the routine returns. If all non-falsified literals are employed as
watches, yet the watch is still less than zero, the constraint is conflicting, which
is returned at line 13. Finally, if the watch slack is non-negative but less than

7 In MiniSAT [13] parliance, q is the qhead .



Watched Propagation for PB 7

Procedure propagate(constraint C, integer idx )

External data: watch list wlist , current assignment ρ
Result: OK if C is not falsified, otherwise CONFLICT

1 i ← 1
2 while i ≤ size(C) and C.wslk < maxcf (C) do
3 `← C[i ].lit

4 if ` 6∈ ρ and C[i ].wflag = 0 then
5 C[i ].wflag = 1
6 wlist(`)← wlist(`) ∪ {(C, i)}
7 C.wslk ← C.wslk + C[i ].coef

8 i ← i + 1

9 if C.wslk ≥ maxcf (C) then
10 C[idx ].wflag = 0
11 wlist(C[idx ].lit)← wlist(C[idx ].lit) \ {(C, idx )}
12 return OK

13 if C.wslk < 0 then return CONFLICT
14 j ← 1
15 while j ≤ size(C) and C.wslk < C[j ].coef do
16 `← C[j ].lit

17 if ` 6∈ ρ and ` 6∈ ρ then ρ.push(`)
18 j ← j + 1

19 return OK

the largest coefficient, the constraint may propagate unassigned literals, which is
checked in the loop at line 14. Recall that the terms of a constraint are sorted
in decreasing coefficient order, allowing the loop at line 14 to conclude when
C.wslk < C[j ].coef , avoiding a full linear scan. In case C.wslk < maxcf (C), the
constraint keeps watching the falsified literal. This allows procedure backjump

to increase the watch slack of a constraint during backjumps, to a point where
C.wslk ≥ maxcf (C) without searching for new watches.

3.2 An Extensive Example

Example 3. As in Example 2, consider a freshly initialized solver where the input
formula consists only of the constraint C

.
= 3x + 2y + z +

∑1000
i=1 wi ≥ 3. Let

the initial watches for C be {x, y, z}, and hence, watchslack(C, ρq) = C.wslk = 3.
Let the literals w1 to w997 be prioritized by the solver’s decision heuristic, so
the current assignment ρ is incrementally extended by deciding the literals w1 to
w997, and after each decision, procedure processWatches is called, incrementing
q to 997. As no constraint watches any wi, propagate is never called.

Let x be the 998st decision, leading to ρ = (w1, . . . , w997, x). processWatches
increases q to 998, and as x is watched by C, decreases C.wslk to 0 and calls
propagate(C, 1). propagate iterates over C, picking w998, w999 and w1000 as new
watches in the loop at line 2. After exiting the loop, the watch slack has increased
to C.wslk = 3, so C.wslk ≥ maxcf (C) and x is dropped as watch at lines 10 and
11. The watched literals for C now are watches(C) = {y, z, w998, w999, w1000}.



8 J. Devriendt

Procedure processWatches

External data: database ψ, current assignment ρ, propagation index q, watch
list wlist

Result: OK if no constraint is falsified, otherwise a falsified constraint
1 while q < size(ρ) do
2 q ← q + 1
3 `← ρ[q]
4 visited ← ∅
5 foreach (C, idx ) ∈ wlist(`) do
6 visited ← visited ∪ {(C, idx )}
7 C.wslk ← C.wslk − C[idx ].coef
8 if propagate(C, idx)= CONFL then
9 q ← q − 1

10 foreach (C′, idx ′) ∈ visited ∩ wlist(`) do
11 C′.wslk ← C′.wslk + C′[idx ′].coef
12 return C

13 return OK

Procedure backjump(integer s)

External data: database ψ, assignment ρ, propagation index q
1 while size(ρ) > s do
2 `← ρ[size(ρ)]
3 if q = size(ρ) then
4 q ← q − 1

5 foreach (C, idx ) ∈ wlist(`) do
6 C.wslk ← C.wslk + C[idx ].coef

7 ρ.pop()

Let z be the 999th literal decision, leading to ρ = (w1, . . . , w997, x, z). Running
processWatches increases q to 999, and as z is watched by C, decreases C.wslk
to 2 and calls propagate(C, 3). propagate cannot find further watches, so 0 ≤
C.wslk < maxcf (C) and the while loop at line 14 looks for literals to propagate.
The only literal for which C.wslk < C[j ].coef , x, is already assigned to false, so
no literals can be propagated, and both ρ and watches(C) remain unchanged.

Let w998 be the next literal decision, leading to ρ = (w1, . . . , w997, x, z, w998).
processWatches increases q to 1000, and as w998 is watched, decreases C.wslk
to 1 and calls propagate(C, 1001). propagate cannot find further watches, so
0 ≤ C.wslk < maxcf (C) and the while loop at line 14 checks which literals can be
propagated. The only literals for which C.wslk < C[j ].coef are x and y. The latter
is still unassigned, so it is propagated at line 17. Returning to processWatches,
ρ = (w1, . . . , w997, x, z, w998, y), so q = 1000 < size(ρ) = 1001 – the loop at line
5 continues. q is incremented to 1001, but as y is not watched by C, propagate
is not called again.

Finally, let the solver backjump to the root by calling backjump(0). First,
literal y is unassigned, which is not watched by C (even though its negation y is)



Watched Propagation for PB 9

so its watch slack is not updated. Then, w998 is unassigned, which is watched by
C, so C.wslk is incremented to 2. Next, z is unassigned, which is watched by C,
so C.wslk is incremented to 3. At this point, q decreased from 1001 to 998. For
the remaining 998 iterations, no further adjustments to C.wslk are needed, as
none of its watches {y, z, w998, w999, w1000} are falsified.

3.3 Algorithm Analysis

The following two invariants underpin the soundness and completeness of our
approach. Short proof sketches are available online [12].

Lemma 4 (Watch slack invariant). The procedures processWatches (calling
propagate) and backjump preserve the property

C.wslk = watchslack(C, ρq) (6)

Lemma 5 (Watch set invariant). The procedures processWatches (calling
propagate) and backjump preserve the property

C.wslk < maxcf (C)⇒ ∀` ∈ lits(C) \ watches(C) : ` ∈ ρ (7)

for a constraint C if the argument of backjump is chosen in such a way that
for all constraints C where C.wslk < maxcf (C), either all of its falsified watches
become unassigned, or none of its non-watched literals become unassigned.

To maintain the watch set invariant, the solver has to take care where to
backjump. Withholding detail, the well-known technique of partitioning the
current assignment in contiguous decision levels and backjumping over each level
as a whole maintains the watch set invariant.

Lemma 6. If the watch set and watch slack invariants hold, calling the procedure
processWatches (calling propagate) propagates literal `i with coefficient ci in
constraint C only if it is unassigned and slack(C, ρ) < ci, and reports that C is
conflicting only if slack(C, ρ) < 0. I.e., processWatches is sound.

Lemma 7. Assuming the watch set and watch slack invariant hold, if the pro-
cedure processWatches (calling propagate) returns OK, no conflicting con-
straint under ρ exists, and no further propagations under ρ are possible. I.e.,
processWatches is complete.

3.4 Two Optimizations

The datastructures needed for our proposed algorithm are fairly simple and
should have a linear memory footprint and take (amortized) constant time for
each operation. However, a performance bottleneck resides in the loops at lines 2
and 15 in propagate. E.g., Example 3 frequently iterates over the full size of the
constraint to find new watches, even though it was clear no new watches were



10 J. Devriendt

available. By reducing the time spent in those loops or even avoiding to enter
them at all, we can improve efficiency.

First observe that when calling propagate because ρ[q] is watched by C, if
C.wslk < maxcf (C) holds at the end of the loop at line 2, all potential watches
have been exhausted per the watch set invariant. Hence, when calling propagate

for ρ[q′] with q′ > q without backjumping over q, the loop at line 2 can be skipped.
To detect this situation, we check whether C.wslk + C[idx ].coef < maxcf (C). If
it holds, there was an earlier call to propagate that exited the loop at line 2
with C.wslk < maxcf (C), so the loop can now be safely skipped.8

Next observe that, for a given constraint, any literal that is checked to become
a watch by the loop at line 2, but that was not available as watch because it
was falsified or already a watch (line 4 fails), can only become available as watch
after a backjump occurs, since without a backjump the current assignment is
only extended. Similarly, literals checked to be propagated by the loop at line
15 cannot be propagated later without a backjump occurring. To exploit this,
we permanently store the indices i and j of the loops at lines 2 and 15 for each
constraint (e.g., C.i and C.j ) and only reset them to 0 if a backjump happened.
The latter condition is simple to check: keep a global variable (e.g., bkjmps) that
increments by 1 at each backjump. For each constraint, check whether the global
bkjmps matches a local copy C.lastbkjmp that is set at each propagate call.

Procedure propagateOpt extends propagate with these two optimizations.
Remark that as a result of these optimizations, in between backjumps, all calls
to propagateOpt with a given constraint C, perform only O(size(C)) operations
in aggregate.

4 Related Work

A PB propagation algorithm closely related to our work is that of the Pueblo
solver [28]. It also sorts the terms of a constraint in decreasing coefficient order
and checks for propagation if the slack over the watched literals of the constraint
is less than the maximum coefficient of the constraint. However, except in the
case of a conflicting constraint, it does not keep falsified literals as watch, as
per propagate. It also does not update the watch slack during backjumps, as
per backjump. Hence, it is not clear how Pueblo would restore the watches in
the restart scenario described at the end of Example 3.9 Also, Pueblo does not
implement the optimizations described in Section 3.4, and does not store the
index of a watched literal of a constraint in the watch lists, which might lead to
a linear lookup overhead or require a cache-inefficient associative array.

Before Pueblo, work on the Galena solver [6] also prompted PB propagation
investigation. It uses a watched propagation scheme where the number of watches
of a constraint depends on a dynamic maximum coefficient amax of the literals
currently not assigned to true. This minimizes the number of watched literals, but

8 Note that this first optimization depends on the watch set invariant, and thus on an
appropriate backjump scheme.

9 After inquiring with the authors, the source code of Pueblo no longer seems available.



Watched Propagation for PB 11

Procedure propagateOpt(constraint C, integer idx )

External data: watch list wlist , current assignment ρ, backjump count bkjmps
Result: OK if C is not falsified, otherwise CONFLICT

1 if C.lastbkjmp < bkjmps then
2 C.i ← 1
3 C.j ← 1
4 C.lastbkjmp ← bkjmps

5 if C.wslk + C[idx ].coef ≥ maxcf (C) then
6 while C.i ≤ size(C) and C.wslk < maxcf (C) do
7 `← C[C.i ].lit

8 if ` 6∈ ρ and C[C.i ].wflag = 0 then
9 C[C.i ].wflag = 1

10 wlist(`)← wlist(`) ∪ {(C,C.i)}
11 C.wslk ← C.wslk + C[C.i ].coef

12 C.i ← C.i + 1

13 if C.wslk ≥ maxcf (C) then
14 C[idx ].wflag = 0
15 wlist(C[idx ].lit)← wlist(C[idx ].lit) \ {(C, idx )}
16 return OK

17 if C.wslk < 0 then return CONFLICT
18 while C.j ≤ size(C) and C.wslk < C[C.j ].coef do
19 `← C[C.j ].lit

20 if ` 6∈ ρ and ` 6∈ ρ then ρ.push(`)
21 C.j ← C.j + 1

22 return OK

according to [27], two thirds of the run time of the Galena propagation procedure
is spent updating amax for each constraint. Because of this, it was proposed to
keep amax fixed to the highest coefficient (i.e., maxcf (C)), but Galena eventually
settled on a three-tiered approach with watched propagation only for clauses and
cardinality constraints, and counter propagation for general PB constraints [6].

The more recent Sat4J uses this three-tiered approach by default, but provides
the option to enable a less efficient watched propagation [18].

Finally, the RoundingSat solver [14] implements a watched propagation algo-
rithm which, as in our approach, uses a static maximum coefficient to calculate
the number of needed watches and keeps watching falsified literals, but swaps
watched literals to the front of the constraint [26]. This makes calculating the
watch slack after every call relatively efficient, as only the watched literals in
the front of the constraint need to be iterated over, rendering the update of the
watch slack during backjumps obsolete. As the watch swaps alter the order of the
literals of the constraint, the index of a watched literal cannot be stored in the
watchlist, as in our approach, and is recalculated during watch slack calculation.
To check for propagating literals, RoundingSat again always iterates over all
watched literals. However, the number of watches of a PB constraint can grow
linearly in the size of the constraint, which leads to a potentially large overhead
for constraints that require lots of watches.



12 J. Devriendt

On the CP side, to the best of our knowledge, the constraint in the global
constraint catalog most closely related to PB constraints is sum set [29], which
constrains an integer variable V to take the sum of a variable subset of a set
of values. In the special case where V is constrained only by one fixed bound,
sum set is equivalent to a PB constraint. The propagator for sum set in the CP
solver Gecode [15] relies on counter propagation, though the comparison is not
fully fair as not only literals have to be propagated, but bounds on V as well.

5 Experimental Evaluation

To experimentally evaluate our proposed propagation algorithm, we implemented
it in the RoundingSat PB solver [26]. Source code, a binary, and raw experimental
data are available online [12]. As hardware we used AMD Opteron 6238 nodes
having 6 cores and 16 GiB of memory each. Each run was executed as a single
thread on a node with a 5000s timeout limit.

To make a sufficiently broad comparison, we present experiments on instances
from the linear small coefficient decision and optimization tracks from the most
recent PB competition [24], referred to as PB16dec and PB16opt. Additionally,
we investigate 0-1 integer linear programming instances from the MIPLIB li-
braries [21, 3, 1, 17, 22, 16]. Since these sets contain few decision instances, we also
created decision versions of the optimization problems. For this, we constructed
a first instance by replacing the objective function f with a constraint stating
that f should be at least the best known value, and a second where f should be
strictly better. As RoundingSat can currently only deal with integer coefficients
of magnitude at most 109, some of the instances were rescaled and rounded.
We refer to the corresponding MIPLIB decision and optimization problems as
MIPLIBdec and MIPLIBopt. These instances are available online [11].

5.1 Two Optimizations to Watched PB Propagation

Let’s start with a simple question: how effective are the two optimizations
described in Section 3.4? For this, we implemented in RoundingSat watched
propagation per Procedure propagate (watch) and per Procedure propagateOpt
(watch-opt), and compare the propagation speed defined as the total propagations
performed divided by the solve time. As watch and watch-opt do not differ in the
order in which propagations happen, the runs for both watch and watch-opt have
the same conflict and decision counts and any difference in propagation speed is
solely due to algorithmic efficiency. Figure 2 plots the result for the instances
that were solved by both watch and watch-opt within resource limits and took at
least 1 second to solve. The result is clear: the optimizations can increase the
propagation speed by an order of magnitude and never incur significant overhead.

5.2 Expensive Backjumps?

One advantage of watched propagation in SAT solvers is that no work needs
to be done during backjumps, a feature preserved by the original propagation



Watched Propagation for PB 13

implementation of RoundingSat . Our approach updates the watch slack during
backjumps, though only for those constraints C that have falsified watches, which
only happens if C.wslk < maxcf (C). Figure 3 plots the number of times watch-opt
looked up a constraint when backjumping over a falsified watched literal (line 6
in backjump and 11 in processWatches) versus the number of times it looked up
a constraint during propagation of a watch (lines 7 and 8 in processWatches),
for instances solved within resource limits.

Backjump lookups happen frequently, but never more than propagation
lookups. Often, backjump lookups happen significantly less than propagation
lookups, up to two orders of magnitude. The median number of backjump watch
lookups is also less than half the median of propagation watch lookups. As
backjump lookups perform few operations compared to propagation lookups, the
resulting overhead does not seem to induce a performance bottleneck.

5.3 Performance Evaluation

To evaluate the performance of our approach, we compare watch-opt to:

– counter : an implementation of PB counter propagation (see Section 2.2)
– old : the original propagation algorithm of RoundingSat (see Section 4)
– counter-cc: counter , but clauses and cardinality constraints are handled with

specialized watched propagation routines – the three-tiered approach default
in Sat4J (see Section 4)

– old-cc: three-tiered old with the same specialized routines
– watch-opt-cc: three-tiered watch-opt with the same specialized routines

Figures 4, 5, 6 and 7, compare the propagation speed of watch-opt to the
above alternatives, based on the instances succesfully solved by the compared
approaches within resource limits and taking at least 1 second to solve. Table 1
presents the total number of succesfully solved instances by each approach.

Often, the propagation speed of watch-opt is orders of magnitude faster
than of old and counter , with the reverse being true only infrequently. This
translates to significantly more solved instances compared to old and counter .
The specialized propagation for clauses and cardinality constraints improves
performance in general, with most -cc configurations solving more instances
than their counterparts. watch-opt-cc solves the most instances overall, while
counter-cc seems to profit most from the specialized routines, almost fully closing
the gap with watch-opt-cc. The propagation speed plots in Figures 6 and 7 tell
a similar tale: old-cc propagates significantly slower than watch-opt-cc, but it
becomes harder to judge that watch-opt-cc propagates faster. The geometric
means of their propagation speed in Figure 7 still give the edge to watch-opt-cc.

To explain the relative difference between old/old-cc and counter/counter-cc,
it is useful to characterize when counter and old accrue the most overhead. A
counter algorithm induces most overhead for constraints with low watch count
as continually updating the high slacks for these constraints is often unnecessary.
Inversely, old incurs more overhead for constraints that have a relatively high



14 J. Devriendt

number of watches, as its eager recalculation of watch indices, watch slacks, and
propagating watches, are linear operations in the number of watches. Since clauses
and low-degree cardinality constraints are frequently generated constraints with
low watch counts, this can explain why counter profits a lot more from the
specialized propagation routines than old .

We conclude that watch-opt is indeed more efficient than its counter counter-
part. However, adding specialized clause and cardinality constraint propagation
into the mix strongly diminishes its advantage – counter-cc, the Sat4J default
approach, is definitely a close second.

Table 1: Solved instance counts for different propagation implementations
old counter watch-opt old-cc counter-cc watch-opt-cc

PB16dec (1783) 1429 1385 1451 1444 1456 1472
MIPLIBdec (556) 182 196 203 187 204 205
PB16opt (1600) 820 846 854 825 862 854
MIPLIBopt (291) 69 76 77 71 75 79

6 Conclusion

We present an optimized watched propagation algorithm for PB or 0-1 integer
linear constraints. Our experiments indicate it is more efficient than counter
propagation used by Sat4J and the watched propagation used by RoundingSat .
Hence, our approach seems a good candidate to replace PB counter propagation
with PB watched propagation, though the performance gains are moderate in
the three-tiered setting. Nonetheless, the results are sufficiently convincing to
consider watch-opt-cc as a new default propagation algorithm for RoundingSat .

An interesting avenue to speed up PB propagation would be to pinpoint which
PB constraints propagate more efficiently with a counter approach and which
favor the watched approach. Maybe those constraints which most of the time
have a relatively large number of watched literals are better off with the counting
approach? Other future work may reconsider the idea of Galena: track the largest
coefficient of non-true literals to reduce the number of watches for a constraint.
Our work can als prove useful to improve CP propagators for constraints closely
related to PB constraints, such as the sum set constraint. Finally, the order in
which constraints propagate strongly influences what a conflict-driven solver
will learn. Prioritizing certain types of constraints during propagation may yield
better learned constraints.

Acknowledgments

The Swedish National Infrastructure for Computing (SNIC) at the High Per-
formance Computing Center North (HPC2N) at Ume̊a University provided
computational resources. The author is supported by the Swedish Research
Council grant 2016-00782.

We are grateful to Emir Demirović, Jan Elffers, Stephan Gocht, Daniel Le
Berre and Jakob Nordström for discussions on PB propagation.



Watched Propagation for PB 15

103 104 105 106

watch (geo-mean 8.93E+04)

103

104

105

106
wa

tc
h-

op
t (

ge
o-

m
ea

n 
1.

83
E+

05
)

PB16dec (472/1783)
PB16opt (307/1600)
Miplib01dec (86/556)
Miplib01opt (38/291)

Fig. 2: Propagations per second
for watch and watch-opt .

100 102 104 106 108 1010

propagation watch lookups (median 5.20E+06)

100

102

104

106

108

1010

ba
ck

ju
m

p 
wa

tc
h 

lo
ok

up
s (

m
ed

ia
n 

2.
38

E+
06

) PB16dec (1451/1783)
PB16opt (854/1600)
Miplib01dec (203/556)
Miplib01opt (77/291)

Fig. 3: Watch lookups for watch-opt .

103 104 105 106

old (geo-mean 1.06E+05)

103

104

105

106

wa
tc

h-
op

t (
ge

o-
m

ea
n 

2.
09

E+
05

)

PB16dec (454/1783)
PB16opt (292/1600)
Miplib01dec (76/556)
Miplib01opt (33/291)

Fig. 4: Propagations per second
for old and watch-opt .

103 104 105 106

counter (geo-mean 8.34E+04)

103

104

105

106

wa
tc

h-
op

t (
ge

o-
m

ea
n 

1.
47

E+
05

)

PB16dec (414/1783)
PB16opt (286/1600)
Miplib01dec (80/556)
Miplib01opt (43/291)

Fig. 5: Propagations per second
for counter and watch-opt .

103 104 105 106

old-cc (geo-mean 8.99E+04)

103

104

105

106

wa
tc

h-
op

t-c
c 

(g
eo

-m
ea

n 
2.

01
E+

05
)

PB16dec (436/1783)
PB16opt (274/1600)
Miplib01dec (78/556)
Miplib01opt (34/291)

Fig. 6: Propagations per second
for old-cc and watch-opt-cc.

103 104 105 106

counter-cc (geo-mean 1.20E+05)

103

104

105

106

wa
tc

h-
op

t-c
c 

(g
eo

-m
ea

n 
1.

51
E+

05
)

PB16dec (427/1783)
PB16opt (284/1600)
Miplib01dec (90/556)
Miplib01opt (36/291)

Fig. 7: Propagations per second
for counter-cc and watch-opt-cc.



16 J. Devriendt

References

[1] Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Operations Research Letters
34(4), 361–372 (2006). https://doi.org/10.1016/j.orl.2005.07.009, http://www.zib.
de/Publications/abstracts/ZR-05-28/

[2] Bayardo Jr., R.J., Schrag, R.: Using CSP look-back techniques to solve real-world
SAT instances. In: Proceedings of the 14th National Conference on Artificial
Intelligence (AAAI ’97). pp. 203–208 (Jul 1997)

[3] Bixby, R., Ceria, S., McZeal, C., Savelsbergh, M.: An updated mixed integer
programming library: MIPLIB 3.0 (1998)

[4] Blake, A.: Canonical Expressions in Boolean Algebra. Ph.D. thesis, University of
Chicago (1937)

[5] Buss, S., Nordström, J.: Proof complexity and SAT solving (2020), chapter to
appear in the 2nd edition of Handbook of Satisfiability. Draft version available at
http://www.csc.kth.se/∼jakobn/research/

[6] Chai, D., Kuehlmann, A.: A fast pseudo-Boolean constraint solver. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 24(3),
305–317 (Mar 2005), preliminary version in DAC ’03

[7] Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
3rd Annual ACM Symposium on Theory of Computing (STOC ’71). pp. 151–158
(May 1971)

[8] Cook, W., Coullard, C.R., Turán, G.: On the complexity of cutting-plane proofs.
Discrete Applied Mathematics 18(1), 25–38 (Nov 1987)

[9] Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Communications of the ACM 5(7), 394–397 (Jul 1962)

[10] Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7(3), 201–215 (1960)

[11] Devriendt, J.: Miplib 0-1 instances in OPB format (May 2020).
https://doi.org/10.5281/zenodo.3870965

[12] Devriendt, J.: Online Repository for ”Watched Propagation of 0-1 Integer Linear
Constraints” (May 2020). https://doi.org/10.5281/zenodo.3952444

[13] Eén, N., Sörensson, N.: An extensible SAT-solver. In: 6th International Conference
on Theory and Applications of Satisfiability Testing (SAT ’03), Selected Revised
Papers. Lecture Notes in Computer Science, vol. 2919, pp. 502–518. Springer
(2004)

[14] Elffers, J., Nordström, J.: Divide and conquer: Towards faster pseudo-Boolean
solving. In: Proceedings of the 27th International Joint Conference on Artificial
Intelligence (IJCAI ’18). pp. 1291–1299 (Jul 2018)

[15] Gecode: Generic constraint development environment. https://www.gecode.org/
[16] Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold,

T., Christophel, P.M., Jarck, K., Koch, T., Linderoth, J., Lübecke, M., Mittelmann,
H.D., Ozyurt, D., Ralphs, T.K., Salvagnin, D., Shinano, Y.: MIPLIB 2017: Data-
Driven Compilation of the 6th Mixed-Integer Programming Library. Technical
report, Optimization Online (2019), http://www.optimization-online.org/DB
HTML/2019/07/7285.html

[17] Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.,
Danna, E., Gamrath, G., Gleixner, A., Heinz, S., Lodi, A., Mittelmann, H., Ralphs,
T., Salvagnin, D., Steffy, D., Wolter, K.: MIPLIB 2010. Mathematical Programming
Computation 3(2), 103–163 (2011). https://doi.org/10.1007/s12532-011-0025-9,
http://mpc.zib.de/index.php/MPC/article/view/56/28

https://doi.org/10.1016/j.orl.2005.07.009
http://www.zib.de/Publications/abstracts/ZR-05-28/
http://www.zib.de/Publications/abstracts/ZR-05-28/
http://www.csc.kth.se/~jakobn/research/
https://doi.org/10.5281/zenodo.3870965
https://doi.org/10.5281/zenodo.3952444
https://www.gecode.org/
http://www.optimization-online.org/DB_HTML/2019/07/7285.html
http://www.optimization-online.org/DB_HTML/2019/07/7285.html
https://doi.org/10.1007/s12532-011-0025-9
http://mpc.zib.de/index.php/MPC/article/view/56/28


Watched Propagation for PB 17

[18] Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation 7, 59–64 (Jul 2010)

[19] Levin, L.A.: Universal sequential search problems. Problemy peredachi informatsii
9(3), 115–116 (1973), in Russian. Available at http://mi.mathnet.ru/ppi914

[20] Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for proposi-
tional satisfiability. IEEE Transactions on Computers 48(5), 506–521 (May 1999),
preliminary version in ICCAD ’96

[21] MIPLIB 2.0. http://miplib2010.zib.de/miplib2/miplib2.html (1996)
[22] MIPLIB 2017 (2018), http://miplib.zib.de
[23] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-

neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference (DAC ’01). pp. 530–535 (Jun 2001)

[24] Pseudo-Boolean competition 2016. http://www.cril.univ-artois.fr/PB16/ (Jul
2016)

[25] Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal
of the ACM 12(1), 23–41 (Jan 1965)

[26] RoundingSat. https://gitlab.com/miao research/roundingsat
[27] Sheini, H.M., Sakallah, K.A.: Pueblo: A modern pseudo-Boolean SAT solver. In:

Proceedings of the Design, Automation and Test in Europe Conference (DATE ’05.
pp. 684–685 (Mar 2005)

[28] Sheini, H.M., Sakallah, K.A.: Pueblo: A hybrid pseudo-Boolean SAT solver. Journal
on Satisfiability, Boolean Modeling and Computation 2(1-4), 165–189 (Mar 2006),
preliminary version in DATE ’05

[29] Global constraint catalog: sum set. https://sofdem.github.io/gccat/gccat/Csum
set.html

[30] Zhang, H., Stickel, M.: Implementing the davis-putnam method.
Journal of Automated Reasoning 24(1), 277–296 (2000).
https://doi.org/10.1023/A:1006351428454, https://doi.org/10.1023/A:
1006351428454

http://mi.mathnet.ru/ppi914
http://miplib2010.zib.de/miplib2/miplib2.html
http://miplib.zib.de
http://www.cril.univ-artois.fr/PB16/
https://gitlab.com/miao_research/roundingsat
https://sofdem.github.io/gccat/gccat/Csum_set.html
https://sofdem.github.io/gccat/gccat/Csum_set.html
https://doi.org/10.1023/A:1006351428454
https://doi.org/10.1023/A:1006351428454
https://doi.org/10.1023/A:1006351428454

	Watched Propagation of 0-1 Integer Linear Constraints 

